
AD-A268 194

RL-TR-93-96
Final Technical Report
May 1993

NRC CLASS 1E DIGITAL
COMPUTER SYSTEM
GUIDELINES

SoHaR Incorporated Ic

Herbert Hecht, Ann T. Tai, Kam S. Tso StU131z 1993 1) E

APPROVED FOR PULI/C RELEASE" DISTRIBUTION UNLIMITED.

93-18594

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

93 - X

LIMI NN TICE
i €i

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-93-96 has been reviewed and is approved for publication.

APPROVED: q 4 CJ-
JOSEPH A. CAROLI
Project Engineer

FOR THE COA4MANDER: ý

JOHN J. BART
Chief, Reliability Sciences
Electromagnetics and Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory

mailing list, or if the addressee is no longer employed by your organization,

please notify RL (ERSR) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form AprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-01 88

PLt•k rWMkn" =in & __ ard Go nW • ar d•b rt &uri&d todugm 1 rz kf t1ru Skd.ca 0u M 1, &visg bd'~ uumWd'o wV ct' ea d.&s.

cokdmd, d I leniiiwb ekxk~g suggemu for rodxg u-* b~n* to Wadiatan Hesd.mtwo Sinvbw Olmew for kago.Wkii Operdiars -i1Rqputs 1215 Jkffww,
OwD" K , SLA@ 1204. A*,kgm VA Z2-.43O. wn to fm Ofitm d Muugwnwt wd Budg Plpwatc Rm•duz Proe (070 9M. WeeNVM OC 20=

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE a REPORT TYPE AND DATES COVERED

May 1993 Final Jul 91 - Jul 92

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NRC CLASS IE DIGITAL COMPUTER SYSTEM GUIDELINES C - F30602-89-D-OlO0
Task 8

PE - 62702F
6.AUTHOR(S) Herbert Hecht, Ann T. Tai, Kam S. Tso PR - R391

TA - QB
WU - 11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E$) 8. PERFORMING ORGANIZATION
SoHar Incorporated REPORT NUMBER

8421 Wilshire Blvd, Suite 201

Beverly Hills CA 90211-3204

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRES$(ES) 10. SPONSORING/MONITORING
Rome Laboratory/ERSR AGENCY REPORT NUMBER

525 Brooks Road
Griffiss AFB NY 13441-4505 RL-TR-93-96

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Joseph A. Caroli/ERSR/(315)330-4205.

12a. DISTRIBUTIONWAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

1aL ABSTRACT(ma.d 2w -m)

This report contains guidance on the design and development of reliable software

for digital safety systems of nuclear power plants (Class 1E systems). The technology

is dual-use in that both the nuclear and defense communities will benefit from it.

Four major topics are addressed: 1. Computer Programming Languages - C, C++, Ada and

PL/M-86 were examined for applicability to high integrity safety systems; 2. Software

Design and Development - Design and development process models, applicable standards,

and Computer-Aided Software Engineering (CASE) tool usage for Class 1E systems

development were identified; 3. Software Testing - This section addresses software

test strategies and termination criteria for Class 1E systems; and 4. Fault Tolerance

and Fault Avoidance techniques for developing highly reliable Class LE system software

are identified.

The Nuclear Regulatory Commission will use this development as a stepping stone leading

to a draft nuclear regulatory guidance document. The DoD benefits by furthering

research in software practices for high integrity systems.

I4.SUBJECTTERMS Software Quality, Software Reliability, Software iS NUMBER OF PAGES 194

Fault Intolerance, Nuclear Safety Systems, High Integrity ComputingNPFcECODE

Software Design, Software Testing
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U/L

NSN 754o0• -290-5W Stn do Fom 29B (Ftw 2-6v
Prmmmtby I• ANSI d Z"
29.102

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, or any of their employees, makes any warranty, expressed or implied, or
assumes any legal liability of responsibility for any third party's use, or the results of
such use, of any information, apparatus, product or process disclosed in this report,
or represents that its use by such third party would not infringe privately owned
rights.

D1TXC QUALITY IN&PEL'ED 3

Aooession For

NTIS 13PA&I

DTIC TAf 1"Urrn-n•ýounced [

Avz 1:b-1 lty Codes

Dist Spocial

II

S i I I I I II I I

NOTES ON UTILIZATION OF THIS REPORT BY DOD AGENCIES

The report "Class IE Digital System Studies" was prepared for use within the U. S. Nuclear
Regulatory Commission, where the term "Class IE" indicates an electronic system required for
the safe shut-down of a nuclear plant under anomalous conditions or for the mitigation of the
consequences of an accident. The report will be useful in its entirety to DoD agencies in the
following areas:

1. Application-independent research in software practices for high integrity systems

2. Application-specific investigation where requirements are analogous to the nuclear plant
shut-down situation, e. g., manufacture or handling of nuclear weapons or of other
hazardous materials.

In addition, individual chapters of this report may be applicable as indicated below:

Chapter 2 - A Comparative Study of Programming Languages

While the Ada language will be selected for most DoD applications the comparisons presented
in this chapter will still be of interest in (a) the revision of the Ada standard (Ada 9x) currently
in process, and (b) the evolution of object oriented programming practices.

Chapter 3 - Design and Development Criteria

This chapter is broadly applicable to software development for high integrity systems. Section
3.2 - Design and Development Process Models -discusses problems of the waterfall model that
are of particular interest to DoD agencies. In Section 3.3 - Applicable Standards - the description
of the U. K. Ministry of Defense Standards 0055 and 0056, dealing with the application of digital
systems to critical weapon systems, may be of special interest. The final two sections, tool usage
and cost benefit analysis, should be useful to DoD agencies in their entirety.

Chapter 4 - Test Methodology and Criteria

This chapter is generally applicable in the DoD environment with the exception of Section 4.3 -
Management Considerations for Class 1E Software Test - which is mostly oriented to specific

concerns of the nuclear power field. In other sections some re-interpretation of terms may be
necessary, particularly with regard to document nomenclature.

iii

Chapter 5 - Fault Tolerance and Fault Avoidance

This chapter is generally applicable to the DoD environment. With regard to portions of Section
5.2 - The Nature of Software Failures - that deal with classification of failures DoD agencies will
usually be governed by MIL-STD-1629 (Failure Modes, Effects and Criticality Analysis) or MEL-
STD-882 (System Safety Programs). The military standards are presented here as one of several
options, and the recommended classification scheme is in part based on them. Other sections are
applicable in their entirety.

iv

Contents

Chapter 1

Introduction 1
1.1 Overview of Report 1
1.2 Terms and Acronyms 2

1.2.1 Term s 2
1.2.2 Acronyms 11

1.3 Standards .. 12

Chapter 2

A Comparative Study of
Programming Languages 15

2.1 Introduction ... 15
2.1.1 O verview .. 15

2.2 Stability of the Language Standard 16
2.2 .1 C . 16
2.2.2 C ++ 16
2.2.3 A da 16
2.2.4 PL/M -86 .. 17

2.3 Program Control Directives 17
2.3.1 Conditional Control 17
2.3.2 Alternative Control 18
2.3.3 Iterative Control ... 18
2.3.4 Branching Control 19

2.4 Efficiency in Real-Time Operation 20
2.5 Strong Data Typing and the Ability to Check during Compilation and Execution . 20
2.6 Support for Object Oriented Programming 22
2.7 Cost/Benefit Data on the Use of Languages 24
2.8 Availability of CASE Tools .. 25
2.9 Summary and Conclusions ... 26

Chapter 3

Design and Development Criteria 28
3.1 Introduction ... 28

V

3.1.1 Overview of the Chapter 28
3.2 Design and Development Process Models 29

3.2.1 W aterfall and Spiral Models 29
3.2.2 Regulatory Concerns .. 31
3.2.3 Recommendations .. 33

3.3 Applicable Standards 33
3.3.1 Standards Utilization in the Survey 34
3.3.2 Current and Evolving U. S. Standards 34

3.3.2.1 U. S. Military Standards 34
3.3.2.2 Other U. S. Government Standards 36
3.3.2.3 U. S. Voluntary Standards 36

3.3.3 Current and Evolving International Standards 37
3.3.4 Foreign Standards .. 38
3.3.5 Regulatory Concerns .. 40
3.3.6 Recommendations .. 41

3.4 Tool Usage in Design and Development 42
3.5 Cost-Benefit Analyses .. 45
3.6 Conclusions ... 46

Chapter 4

Test Methodology and Criteria 48

4.1 Introduction 48
4.1.1 Overview of the Chapter 48

4.2 Technical Considerations for Class 1E Software Test 49
4.2.1 Testing in Software Lifecycle 49

4.2.1.1 Major Lifecycle Testing Activities 49
4.2.1.2 Objectives and Requirements 50

4.2.2 Software Test Strategies 55
4.2.2.1 Top Level Test Strategies 55
4.2.2.2 Lower Level Test Strategies 57

4.2.3 Test Termination Criteria 60
4.2.3.1 Test Termination Criteria Based on Coverage Measures 61
4.2.3.2 Test Termination Criteria Based on Statistical Measurements 62

4.3 Management Considerations for Class 1E Software Test 65
4.3.1 Qualifications of Test Personnel 65

4.3.1.1 Freedom from Bias 65
4.3.1.2 Procedural Qualifications 67
4.3.1.3 Familiarity with the Product and Application 68

4.3.2 Applicable Standards 69
4.3.2.1 The Role of Standards for Test Methodology 69
4.3.2.2 U. S. M ilitary Standards 70

vi

4.3.2.3 Other U. S. Government Standards.......................70
4.3.2.4 Non-Governmental Standards 70
4.3.2.5 International Standards 72
4.3.2.6 Foreign Standards r... 72
4.3.2.7 Evaluation of Test Standards 73

4.3.3 Software Test Tools 73
4.4 Criteria for Review of Class 1E Software Test Programs 75

4.4.1 Definition of the Application and its Environment 75
4.4.2 Testing in the System and Software Development Cycle 77
4.4.3 Management and Organization of Test Activities 77
4.4.4 Applicable Test and Documentation Standards 78
4.4.5 Test Methodology and Test Termination Criteria 79
4.4.6 Test Environment and Test Tools 80
4.4.7 Documentation and Review of Test Results 81

4.5 Conclusions and Recommendations 83

Chapter 5

Fault Tolerance and Fault Avoidance 85

5.1 Introduction ... 85
5.1.1 M otivation ... 85
5.1.2 Structure of this Chapter 85

5.2 The Nature of Software Failures 86
5.2.1 The Failure Process 86
5.2.2 Sevenity of Failures 88
5.2.3 Frequency and Criticality Classifications 90
5.2.4 Error Type Classification 91

5.3 Fault Tolerance .. 91
5.3.1 Architectures for Fault Tolerance 91
5.3.2 Error Detection ... 95
5.3.3 Integration of Fault Tolerance Provisions 98
5.3.4 Evaluation ... 98

5.4 Fault A voidance .. 101
5.4.1 Enforcement of Good Software Engineering Practice 101
5.4.2 Form al M ethods ... 103

5.4.2.1 Statement of the Problem 103
5.4.2.2 Current Capabilities 104
5.4.2.3 Recommended Regulatory Guidance 105
5.4.2.4 D iscussion 106

5.5 Conclusions and Recommendations Ill

Appendix A

vii

CASE Tools Supporting Class 1E Software
Process 113

A. 1 Checklists of CASE Tools for the Design and Development Environment 113
A. 1.1 CASE Tool Features 113
A. 1.2 CASE Tools Checklist for the Design Input Documentation 117
A. 1.3 CASE Tools Checklist for the Software Requirements Specification 119
A. 1.4 CASE Tools Checklist for the Software Design Description 128
A. 1.5 CASE Tools Checklist for the Code 134

A.2 Checklists of CASE Tools for Testing 142
A.2.1 Tools Supporting Complexity Measurement 142
A.2.2 Tools Supporting Syntax and Semantics Analysis 143
A.2.3 Tools Supporting Test Coverage Analysis 144
A.2.4 Tools Supporting Regression Test 144
A.2.5 Tools Supporting Test Data Generation 145

Appendix B

Examples of Fault-Tolerant Safety System
Design 147

B.1 Background 147
B.2 Definitions and Assumptions 150
B.3 The M odels 151

B.3.1 Notations ... 151
B.3.2 Failure Type-1 . .. 152
B .3.3 Failure Type-2 .. 154

B.4 Comparisons of Schemes I and II 155
B.5 Scheme III - Extended Distributed Recovery Block (EDRB) 158
B.6 Techniques of Architecture Selection for Fault Tolerance 166

Appendix C

Survey Summary 169

Bibliography 172

viii

List of Tables

2.1: Environment of Benchmarking Tests 20
2.3: Data Typing, Compilation and Run-Time Checking 22
2.5: Summary of Availability of CASE Tools 26
3.1: Tools Coverage ... 43
3.2: Cost Effects of Methodology Selection Criteria 45
3.3: Numerical Cost Effects 46
5.1: Criticality Ranking 90
5.3: Minimum Required Fault Tolerance Capability 100
A. 1: Programming Language and Host System Information 117
A.2: Tool Features in Support of Design Input Documentation 119
A.3: Tool Features in Supporting Completeness of SRS 120
A.5: Tool Features in Supporting Consistency of SRS 122
A.7: Tool Features in Supporting Traceability of SRS 124
A.9: Tool Features in Supporting Robustness of SRS 126
A. 11: Tool Features in Supporting Completeness of SDD 128
A. 13: Tool Features in Supporting Robustness of SDD 130
A. 14: Tool Features in Supporting Consistency of SDD 130
A. 15: Tool Features in Supporting Verifiability of SDD 131
A. 17: Tool Features in Supporting Traceability of SDD 133
A. 18: Tool Features in Supporting Modularity of SDD 133
A. 19: Tool Features in Supporting Understandability of SDD 134
A.21: Tool Features in Supporting Completeness of CODE 136
A.22: Tool Features in Supporting Correctness of CODE 136
A.23: Tool Features in Supporting Predictability and Robustness of CODE 137
A.24: Tool Features in Supporting Consistency of CODE 137
A.25: Tool Features in Supporting Structuredness of Code 138
A.26: Tool Features in Supporting Verifiability of CODE 138
A.28: Tool Features in Supporting Traceability of Code 140
A.29: Tool Features in Supporting Understandability of Code 140
A.31: Tools Supporting Complexity Measurement 143
A.32: Tools Supporting Syntax and Semantics Analysis 144
A.33: Tools Supporting Test Coverage Analysis 144
A.34: Tools Supporting Regression Testing 145
A.35: Tools Supporting Test Data Generation 146
A.36: Table A.36 Codes for CASE Tools .. 146
B.l: Assignments of Parameters for Quantitative Evaluations 152
C.l: Survey Summary --- Class IE Products 170

ix

List of Figures

Figure 3.1: The Waterfall Model of the Software Life Cycle 30

Figure 3.2: Spiral Model of the Software Process 32

Figure 4.1: Reliability Estimation During Test 63

Figure 4.2: Input Profiles for Safety Systems 64

Figure 5.1: Failure Terminology 86

Figure 5.2: Failure Manifestations at Several Levels 87

Figure 5.3: Fault Tolerance Architecture 92

Figure 5.4: Examples of Formal Methods Languages 110

Figure B. 1: Analog Implementation 148

Figure B.2: Scheme I System for Generation of Trip Signal 149

Figure B.3: Scheme II System for Generation of Trip Signal 150

Figure B.4: Software Structure for Scheme I 151

Figure B.5: Probability of Type-1 Failure as a Function of Hardware Failure 156

Figure B.6: Probability of Type-2 Failure as a Function of Software Failure 157

Figure B.7: Overview of the EDRB 158

Figure B.8: EDRB Operation (high level) 160

Figure B.9: EDRB Operation (low level) 161

Figure B.10: Fault Tree for Type-l Failure (I) 162

Figure B. 11: Fault Tree for Type-I Failure (II) 163

Figure B.12: Comparison of Scheme I, Scheme 11 and Scheme III 164

x

Figure B.13: Type-1 Failure Probability Improvement of Scheme II over Scheme I 165

Figure B.14: Type-2 Failure Probability of Scheme I and Scheme III 167

xi

Acknowledgements

Technical guidance for the effort resulting in this document was furnished by Mr. Leo Beltracchi
of the Nuclear Regulatory Commission who also contributed many helpful suggestions.
Constructive reviews of draft chapters by Franklin Coffman and J. Persensky of the Nuclear
Regulatory Commission• were greatly appreciated. The authors also wish to thank the Technical
Representative of the USAF Rome Laboratories, Mr. J. Caroli, for his interest in and support of
this project.

Several SoHaR personnel in addition to the authors participated in this effort, with
particularly significant contributions from Joanna Frawley and Myron Hecht.

xii

Chapter 1

Introduction

1.1 Overview of Report

This document is furnished as part of the effort to develop NRC Class I E Digital Computer
System Guidelines which is Task 8 of USAF Rome Laboratories Contract F30602-89-D-0100.
The report addresses four major topics, namely, computer programming languages, software
design & development, software testing and fault tolerance and fault avoidance. The topics are
intended as stepping stones leading to a Draft Regulatory Guide document. As part of this task
a small scale survey of software fault avoidance and fault tolerance practices was conducted
among vendors of nuclear safety related systems and among agencies that develop software for
other applications demanding very high reliability (see Appendix C). The findings of the present
report are in part based on the survey and in part on review of software literature relating to
nuclear and other critical installations, as well as on the authors' experience in these areas.

The major headings of this report are:

* A comparative study of programming language (Chapter 2).
* Design and development criteria (Chapter 3).
* Test methodology and criteria (Chapter 4).
* Fault tolerance and fault avoidance (Chapter 5).

Because of the importance of terminology and standards in this report their listing follows
this section, Section 1.3 lists standards referenced by this report. Appendices represent detail that
supports the presentations of text sections, particularly with regard to tool usage and capabilities,
and fault-tolerant system design.

! !==mild

1.2 Terms and Acronyms

1.2.1 Terms

Abstraction Denotes the essential characteristics of an object that distinguish it from all other
kinds of objects and thus provide crisply defined conceptual boundaries, relative to the
perspective of the viewer.

Acceptance test A series of system tests are performed on the delivered software and usually the
acceptance of the software is made contingent upon the successful completion of these
tests. This term is also used for fault-tolerant software or defensive programming in which
acceptance test is the means of checking computational results for on-line error detection.

Alternative control Allows a program choose among taking multiple alternative actions
according to the value of an expression; this structure contains an ordinary-valued
expression followed by a list of the expression's potential values and the proper action
to take for each one.

ANSI Standards Standards approved by the American National Standards Institute, Inc.

Availability Dependability with respect to the readiness for usage. Measure of correct service
delivery with respect to the alteration of correct and incorrect service.

Backward recovery Form of error recovery where the erroneous state transformation consists
of bringing the system back to a previously occupied state which is presumed to be
correct.

Baseline A set of software items that has been formally reviewed and agreed upon; it then serves
as the basis for further development, and can be changed only through change control
procedures.

Benchmarking Objective comparison of languages, compilers, machines, and etc., by
measurements against a program or standard.

Benign failure Failure whose penalties are small compared to the benefit provided by correct
service delivery.

Black box testing An approach to devise test data without any knowledge of the software under
test or any aspect of its structure.

Bottom-up testing In this approach, the lowest level modules in the system are tested first, by
means of test-drivers. Next, modules are tested that connect to the lowest level modules,
until the main module is included, culminating in the system test.

2

Branching control Unconditionally transfers control to another part of the program.

Branch testing A testing strategy which selects test data so that each predicate decision assumes
a true and a false outcome at least once for a specified fraction of piedicates during the
test set execution.

CASE tools Computer aided tools for software engineering --- not an ad-hoc, grow-your-own
programming method, but a well-defined, and well-recognized process.

Class A set of objects that share a common structure and a common behavior.

Code A uniquely identifiable sequence of instructions and data which is part of a module (e.g.,
main program, subroutine, and macro).

Common-mode failures Failures possibly caused by a single initiating event.

Comparison testing To detect test failures by comparing the output of two or more programs
implemented to the same specification.

Compilation-time checking Checks performed during the compilation process.

Concurrency The property that distinguishes an active object from one that is not active.
Concurrency is one of the fundamental elements of the object model.

Condition coverage The test is completed only when each condition in a compound predicate
assumes all possible outcomes at least once.

Conditional control Allows a program choose between taking two alternative actions according
to the result of a logical expression; this control structure can be nested.

Configuration item An aggregation of software or any of its discrete portions, that satisfies an
end-use function and is designed for configuration management.

Configuration management The process of identifying configuration items, controlling changes,
and maintaining the integrity and traceability of the configuration.

Correct service Service delivered in compliance with the system specification.

Corrective maintenance Preservation or improvement during its operational life of a system's
ability to deliver a service complying with the specification. Fault removal during the
operational life of a system.

3

Coverage Measure of the representativity of the situations to which a system is submitted during
its validation compared to the actual situations it will be confronted with during its
operational life. See also test coverage.

Critical Attribute of an entity whose improper behavior can cause or contribute to death and
injury or major economic loss.

Criticality A measure derived from frequency and severity of failure modes.

Data flow testing The selection of test data that exercise certain paths from a point in a program
where a variable is defined, to points at which that variable definition is subsequently
used. By varying the required combinations of definitions and uses, a family of test data
selection and adequacy criteria can be defined.

Decision coverage The test is completed only when every predicate decision in the program has
executed a true and a false outcome at least once for a specified fraction of decisions.

Dependability Trustworthiness of a computer system such that reliance can justifiably be placed
on the service it delivers.

Design diversity An approach to the production of systems, involving the provision of identical
services from separate designs and implementations.

Design fault Fault of a software design that can be corrected only by a change of the design.

Domain testing A testing strategy involving the selection of test points that lie on and "just off"
the boundaries of the subsets of the input domains (input data) associated with program
paths.

Dormant fault Internal fault not activated by the computation process.

Dynamic analysis Analysis which requires execution of the program using input data.

Encapsulation The process of hiding all of the details of an object that do not contribute to
characteristics essential in a given context.

Error compensation Form of error processing when erroneous state contains enough redundancy
to enable correct service delivery.

Error detection The action of identifying that a system state is erroneous.

Error recovery Form of error processing where an error-free state is substituted for an erroneous
state.

4

External fault Fault resulting from environmental interference or interaction.

Fail-safe system System whose failures can only be, or are to an acceptable extent, benign
failures.

Fail-stop system System whose failures can only be, or are to an acceptable extent, stopping
failures.

Failure The failure is an event in the computer when the content of a register transitions to an
incorrect value (the value that results in the error).

Failure severity Grade of the failure consequences upon the environment.

Fault The cause of a software failure in the program.

Fault avoidance Methods and techniques aimed at producing a fault-free system. Fault
prevention and fault removal.

Fault-based testing A testing strategy aimed at demonstrating that specific classes of faults are
not in the program.

Fault diagnosis The action of determining the cause of an error in location and nature.

Fault passivation The actions taken in order to prevent a fault from being activated. E.g., to
avoid to execute a program under heavy workload.

Fault removal Methods and techniques aimed at reducing the presence (number, seriousness) of
faults.

Fault tolerance Methods and techniques aimed at providing a service complying with the
specification in spite of faults.

Forward recovery Form of error recovery where the erroneous state transformation consists of
finding a new state.

Formal methods The mathematically based techniques for describing system properties. The
methods provide frameworks within which people can specify, develop and verify systems
in a systematic, rather the ad hoc, manner.

Functional testing A black box approach in which the functional properties of the requirements
or specifications are identified and test data selected to specifically test each of those
functions.

5

Generic class A class that serves as a template for other classes, in which the template may be
parameterized by other classes (objects, and/or operations). A generic class must be
instantiated (its parameters filled in) before objects can be created. Generic classes are
typically used as container classes.

Generic function An operation upon an object. A generic function of a class may be redefined
in subclasses; thus for a given object, it is implemented through a set of methods declared
in various classes related via their inheritance hierarchy.

Golden version Version of a program that is correct by definition.

Hard fault or solid fault Fault necessitating fault passivation.

Hazard analysis An iterative process composed of identification and evaluation of hazards
associated with the computer system, to enable them to be eliminated or, if that is not
practical, to assist in the reduction of the associated risks to an acceptable level.

Hierarchy A ranking or ordering of abstractions.

Inheritance A relationship among classes, wherein one class shares the structure or behavior
defined in one (single inheritance) or more (multiple inheritance) other classes.
Inheritance defines a "kind of' hierarchy among classes in which a subclass inherits
from one or more superclasses; a subclass typically augments or redefines the existing
structure and behavior of its superclasses.

Impairments to dependability Undesired, but not unexpected, circumstances causing or

resulting from un-dependability. Faults, errors, and failures.

Incorrect service Service delivered not in compliance with the system specification.

Independent faults Faults attributed to different causes.

Integration test A set of modules are tested together, ensuring that the combined specifications
of these modules are met as the modules interact and communicate.

Integrity Condition of being unimpaired.

Intermittent fault Temporary internal fault. Faults whose conditions of activation cannot be
reproduced or which occur rarely enough.

Internal fault Fault inside a system.

Intrusion Intentional operational external fault.

6

Iterative control Allows the program to loop over a certain set of instructions until a specified
condition is met.

Latent error Error not recognized as such.

Maintainability Ease with which maintenance actions can be performed. Measure of continuous
incorrect service delivery. Measure of the time to restoration from the last experienced
failure.

Metaclass A class whose instances are themselves classes.

Missing path error A domain error where the conditional statement and computations associated
with part of the input data domain are missing entirely, e.g., when data are absent or
when negative values are input and only positive ones can be processed.

Modular redundancy Functionally equivalent computing elements execute the same task(s) in
parallel in order to achieve error detection and/or masking.

Modularity The property of a system that has been decomposed into a set of cohesive and
loosely coupled modules.

Multiple condition coverage The test criterion that all possible combinations of condition
outcomes in each predicate are invoked at least once.

Mutation testing The construction of tests designed to distinguish between mutant (deliberately
altered) programs that differ by a single mutation transformation (e.g. one symbol is
changed).

Object An object has state, behavior, and identity; the structure and behavior of similar objects
are defined in their common class; the terms instance and object are interchangeable.

Object oriented programming A method of implementation in which programs are organized
as cooperative collections of objects, each of which represents an instance of some class,
and whose classes are all members of a hierarchy of classes united via inheritance
relationships.

Operational fault Faults which appear during the system's operation.

Optimization A program compiled in a way that an attribute of the object (speed or size) is
optimized.

Partition testing A testing strategy in which a program's input domain is divided into
subdomains which are "the same" such that it is sufficient to randomly select an element
from each subdomain in order to determine program faults.

7

Path testing A testing strategy which selects test data so that each path through a program or
segment is traversed at least once during the test set execution.

Performability Performance-related measure of dependability.

Persistence The property of an object through which its existence transcends time (i.e. the
object continues to exist after its creator ceases to exist) and/or space (i.e. the object's
location moves from the address space in which it was created).

Polymorphism A concept in type theory, according to which a name (such as a variable
declaration) may denote objects of many different classes that are related by some
common superclass; thus any object denoted by this name is able to respond to some
common set of operations in different ways.

Private A declaration that forms part of the interface of a class, object, or module; what is
declared as private is not visible to any other classes, objects, or modules.

Predicate Every branch point of a program is associated with a predicate. This predicate
evaluates to true of false, and this outcome determines which branch exit will be
followed.

Preventive maintenance Corrective maintenance aimed at removing faults before they are
activated.

Protected A declaration that forms part of the interface of a class, object, or module, but that
is not visible to any other classes, objects, or modules except those that represent
subclasses.

Public A declaration that forms part of the interface of a class, object, or module, and that is
visible to all other classes, objects, and modules that have visibility to it.

Random testing A testing strategy which use realistic test data randomly chosen using
distributions typical of what will be encountered in practice.

Random walk A random process that may be thought of as a particle moving among states in
some state space. What is of interest is to identify the location of the particle in that state
space. The salient feature of a random walk is that the next position the process occupies
is equal to the previous position plus a random variable whose value is drawn
independently from an arbitrary distribution.

Real-time function Function required to be fulfilled within finite time intervals dictated by the
environment.

8

Real-time service Service required to be delivered within finite time intervals dictated by the
environment.

Real-time system System fulfilling at least one real-time function or delivering at least one real-
time service.

Regression testing Systematic repetition of testing to verify that only desired changes are present
in the modified programs.

Related faults Faults attributed to a common cause.

Relational operator Operator which determine whether a certain relationship holds between the
values of the left and right operands.

Reliability Dependability with respect to the continuity of service. Measure of continuous correct
service delivery. Measure of the time to failure.

Robustness Quality attribute which refers to the extent to which a program continues to
perform despite invalid inputs.

Run-time checking Checks performed during the execution of the program.

Safety 1) Dependability with respect to the non-occurrence of catastrophic failures. 2) Measures
of continuous delivery of either correct service or incorrect service after benign failure.
3) Measure of the time to catastrophic failure.

Security Dependability with respect to the prevention of unauthorized access and/or handling of
information.

Self-diagnostics The action of determining the cause of an error in location and nature taken by
the object system itself.

Service System behavior as perceived by the system user.

Service restoration Transition from incorrect to correct service delivery.

Software System or application programs and their documentation.

Software diversity An approach to the production of software, involving the provision of
identical services from separate software designs and implementation.

Software redundancy Extra programs provided to integrate the hardware redundancy into the
complete fault tolerant system.

9

Spiral model A cyclical representation of software development process. Its inductive and
synthetic nature accommodates reuse and prototyping. Its risk-driven approach facilitates
the best mix of existing approaches to a given project.

Stability The property that a programming language is not subject to frequent changes.

Statement testing Every statement in the program is to be executed by the test data set at least
once.

Static analysis It utilizes the computer program, examining this program for syntax errors and
structural properties, but does not require execution of the program.

Strongly typed A characteristic of a programming language, according to which all expressions
are guaranteed to be type-consistent.

Symbolic execution A testing approach where input variables assume symbolic values and by
means of interpreting the program to express the output variables in terms of these
symbols. These output variable expressions can then be examined to see if the program
is computing the functions intended.

System test The entire software system is tested against the system specification.

Test coverage The fraction of elementary program structural elements (path, branch, etc.) that
have been executed at least once by the test case set.

Test driver It is used to provide input data to the module under test that are normally furnished
by other modules or external sources. The test driver together with the data collection
means is sometimes referred to as a test harness.

Test oracle A means to automatically check the correctness of test output, e.g. a scientific
simulation of the process.

Testability The property that a finite set of tests can be specified that will determine if the
program that implements a function contains one of a specified set of faults.

Top-down testing In this approach, the main module is tested first. This is followed by
integration tests involving modules called by or receiving data from this module, and this
process continues until all modules are involved in a system test.

Transient fault Temporary physical external fault.

Trustability System's ability to provide users with information about service correctness.

10

Typing The enforcement of the class of an object, such that objects of different types may not
be interchanged, or at the most, they may be interchanged only in very restricted ways.

Unit test Each unit (or module, a component item in a program) is individually tested to ensure
that its performance meets its stated specification. Also known as module test.

Unintended function The software performs some function which is not specified in the design.

User Another system (physical, human) interacting with the considered system.

Validation Methods and techniques intended to enable confidence to be reached in a system's
ability to deliver a service complying with the specification.

Verification The process of determining whether a system adheres to properties (the verification
conditions) which can be a) general, independent of the specification, or b) specific,
deduced from the specification.

Waterfall model A model which stipulates that software be developed in successive stages. It
emphasizes the feedback loops between stages and provides a guideline to confine the
feedback loops to successive stages to minimize the expensive rework involved in
feedback across many stages.

White box testing An approach which explicitly uses the program structure to develop test data.

1.2.2 Acronyms

ANS American Nuclear Society

ANSI American National Standards Institute

ASME American Society of Mechanical Engineers

DID Design Input Documentation

DOD-STD Department of Defense Standards

ESA European Space Agency

FAT Factory acceptance test

FIPS Federal Information Processing Standards

FRACAS Failure Reporting, Analysis and Corrective Action System

II

FRB Failure Review Board

IEC International Electro-technical Commission

IEEE The Institute of Electrical and Electronics Engineers, Inc.

ISA Instrument Society of America

METBF Mean execution time between failures

MTBF Mean time between failures

MIL-STD Military Standards

MOD Ministry of Defense (United Kingdom)

NIST National Institute of Standards and Technology

NRC Nuclear Regulatory Commission

NUREG/CR Nuclear Regulatory Commission Contractor Report

SAT Site acceptance test

SDD Software Design Description

SP Special Publication

SQA Software Quality Assurance

SRS Software Requirements Specification

SSCCSC System Safety-Critical Computer Software Components

V&V Verification and validation

1.3 Standards

The following is the list of standards referenced by a lower case single letter designator in the
text of this report:

a. "Standard for Software Engineering of Safety Critical Software," Ontario
Hydro/AECL CANDU, issued for one year trial use, 21 December 1990.

12

b. "Application Criteria for Programmable Digital Computer Systems in Safety
Systems of Nuclear Power Generating Stations, "IEEE/ANS-7.4.3.2-1982, 1982.

c. "America National Standard for Information systems --- Programming Language
C," ANSI X3.159, Dec. 1989.

d. "Quality Assurance Requirements for Nuclear Facility Applications," ASME-
NQA-2a, the American Society of Mechanical Engineers, November 1990.

e. "Defense System Software Development," DOD-STD-2167A, 29 February 1988.

f. "Configuration Management Practices for Systems, Equipment, Munitions and
Computer Software," MIL-STD-483A, 4 June 1985.

g. "Reliability Design Qualification and Production Acceptance Tests: Exponential
Distribution," MIL-STD-781C, 1977.

h. "Technical Reviews and Audits for Systems, Equipments, and Computer
Software," MIL-STD-1521B, Jun 1985.

i. "Procedures for Performing a Failure Mode, Effects and Criticality Analysis,"
MIL-STD- 1629A, 24 November 1980.

j. "IEEE Standard for Software Test Documentation," IEEE Std 829-1983, 1983.

k. "Standard for Software Unit Testing," IEEE Std 1008-1985, Mar 1985.

I. "Standard for Software Verification and Validation Plans," IEEE 1012-1986,
1986.

m. "Software Safety Plans," IEEE P-1228, still under development (contact Cynthia
Wright, MITRE Corp., McLean, VA. for more information).

n. "Reliability Program for Systems and Equipment Development and Production."
(Notice 2), MIL-STD-785B, 5 August 1988.

o. "System Safety Program Requirements," MIL-STD-882B, 30 March 1984.

p. "Ada Programming Language," ANSI/MIL-STD-1815A, Jan. 1983.

q. "Guide to Software Acceptance," NIST SP 500-180, National Institute of
Standards and Technology, April 1990.

r. "IEEE Standard for Software Quality Assurance Plans," STD 730-1981, 1981.

13

s. "Documentation of Computer Programs and Automated Data Systems," FIPS
PUB 38, National Institute of Standards and Technology, 15 February 1976.

t. "Programmed Digital Computers Important to Safety for Nuclear Power
Stations," IEC Std. 987, November 1989.

u. "Software for Computers in the Safety Systems of Nuclear Power Stations," IEC
Publ. 880, 1986.

v. "Software for Computers in the Application of Industrial Safety-Related
Systems," IEC 65A(Sec)94, 6 December 1989.

w. "The Procurement of Safety Critical Software in Defence Equipment," UK MOD
00-55, 5 April 1991.

x. "Hazard Analysis and Safety Classification of the Computer and Programmable
Electronic System Elements of Defence Equipment," UK MOD 00-56, 5 April
1991.

14

Chapter 2

A Comparative Study of
Programming Languages

2.1 Introduction

2.1.1 Overview

This chapter presents the results of a study of programming languages for digital Class 1E
systems in nuclear power plants. It covers C, C++, Ada and PL/M-86, languages that were
identified as being of interest for this application in a small scale survey conducted as part of this
effort.

None of the languages investigated here have deficiencies which immediately preclude
their use in digital Class 1E systems. The scarcity of CASE tools for PL/M makes that language
less desirable than the others for new development. The lack of object-based and object-oriented
controls for PL/M and C makes these languages less efficient in re-use and software maintenance.
For newly developed software C++ and Ada offer more benefits than the other languages. The
greater efficiency of C++ is likely to give it an advantage in future commercial software
development.

The remainder of the chapter is organized as follows. Section 2.2 contrasts the stability
of the language standards and Section 2.3 compares the adequacy and simplicity of program
control directives. Section 2.4 investigates the real-time efficiency by presenting the
benchmarking results. Section 2.5 contrasts the typing properties among the languages and
Section 2.6 presents the features of the programming languages supporting object oriented
programming. Section 2.7 discusses the cost/benefit data on the use of the languages. Section

15

2.9 summarizes the CASE tools available for different programming languages. The final section
provides a brief summary of the findings.

2.2 Stability of the Language Standard

Stability means that a programming language is not subject to frequent changes. A programming
language is said to have high stability if it has a firm standard.

2.2.1 C

C is a stable language.

"* Classic (based on Kernighan and Ritchie), 1978, stable [1].
"* ANSI Standard (ANSI X3.159-1989), stable [c].

2.2.2 C++

C++ is an evolving language [2].

" Release 1.0 (1985): the initial release which added basic object-oriented programming
features to C, such as single inheritance and polymorphism, plus type checking and
overloading.

"* Release 2.0 (1989): improved upon the previous versions (1.0 and its minor releases) in
variety ways, such as the introduction of multiple inheritance.

"* Release 2.1 (1991): minor improvements upon 2.0.

Future versions are expected to support generic units and exception handling.

2.2.3 Ada

Ada has a firm and well policed standard, allowing neither supersets nor subsets.

"• Ada83: the ANSI standard for Ada was released in 1983 (ANSI/MIL-STD-1815A, 1983)
[p], stable.

"* Ada9X: the project has been established to update the ANSI standards (draft being
reviewed by public). Original language definition will probably change in a number of

16

small ways, involving clarifications, the filling of gaps, and the correction of errors [3].
A draft standard is scheduled to be produced by December 1992 and ANSI approval by
September 1993 [4].

2.2.4 PL/M-86

The language PL/M-86 is based on PL/M Programmer's Guide, by Intel Corporation, 1987 [5].
It is an established language used on Intel microcomputers. PL/M programs are upward
compatible across the 80[X]86 family of microprocessors.

2.3 Program Control Directives

The number of program control directives should be agreeable but restricted. All languages met
this criterion. Program control directives can be classified into four categories:

"• conditional control allows a program choose between taking two alternative actions
according to the result of a logical expression; this control structure can be nested.

" alternative control allows a program choose among taking multiple alternative actions
according to the value of an expression; this structure contains an ordinary-valued
expression followed by a list of the expression's potential values and the proper action
to take for each one.

"• iterative control allows the program to loop over a certain set of instructions until a
specified condition is met.

"• branching control unconditionally transfers control to another part of the program.

All the programming languages under survey have adequate control directives to facilitate
structured programming. In general, each control directive of one language can be mapped into
an analogous one in other three languages.

The implementations of directives in different programming languages are illustrated
below.

2.3.1 Conditional Control

Ada

IF condition THEN

17

sequenceofstatements
ELSEIF condition THEN

sequence_of_statements
ELSE

sequenceofstatements
END IF;

EXIT loop_name WHEN condition -- in loops

C, C++
IF (condition)

statement -- statement can be a block
ELSE

statement

PL/M
IF expression THEN

statement; -- statement can be a block
ELSE

statement;

2.3.2 Alternative Control

Ada -- expression must be discrete type

CASE expression IS
WHEN choice => sequence-ofstatements
WHEN OTHERS => sequence-of-statements

END CASE;

C, C++ -- expression must be scalar type
SWITCH (expression) f

CASE constant-expression: statement
DEFAULT: statement

I

PL/M -- expression must be natural number
DO CASE expression;

case-0-statement;
case-l-statement;

END;

2.3.3 Iterative Control

Ada

WHILE condition LOOP
sequenceofstatements

18

END LOOP;

FOR i in 1..10 LOOP
sequenceofstatements

END LOOP;

C, C++

DO statement
WHILE (expression)

WHILE (expression)
statement

FOR (i = 1; i <=10; i++)
statement

PL/M

DO;
sequenceofstatement;

END;

DO WHILE expression;
sequenceof_statement;

END;

DO i = 1 TO 10 BY 1;
sequenceofstatement;

END;

2.3.4 Branching Control

Ada

RETURN expression
GOTO label
RAISE exception

C, C++

CONTINUE -- in loop
BREAK -- in loop
RETURN expression
GOTO label

PL/M

19

RETURN expression
GOTO label

2.4 Efficiency in Real-Time Operation

Benchmarking tests were conducted in order to provide compilation time and execution time
efficiency comparisons among the languages under survey. The environment of our benchmarks
is shown in Table 2.1. The Sun SPARCstation I is a workstation rated at 12.5 MIPS running
SunOS 4.1.

Table 2.1: Environment of Benchmarking Tests

Language JMachine Compiler

C Sun SPARCstation 1 /bin/cc (Classic C)

C++ Sun SPARCstation 1 Sun C++ Ver. 2.1 (AT&T Cfront Ver. 2.1)

Ada Sun SPARCstation 1 SunAda 1.0 (Verdix 6.0)

The benchmark programs used are the Whetstone Benchmark [6]. The computation and
execution times were measured with two optimization indexes, namely, minimal optimization and
full optimization. Additional test cases are also used to compare the benchmark with full run-
time check suppressed and no run-time check suppressed for Ada program. The results are
summarized in Table 2.2. The unit used for measuring execution speed is KWIPS which stands
for "Kilo Whetstone Iterations Per Second." Thus, a larger KWIPS represents a higher speed.
The Whetstone program does not use C++ features and therefore the results of the C program
are applicable to C++ as well.

The results show the greater efficiency of C (and C++) in both compile-time and run-time
efficiency and the compactness of object code for these languages.

2.5 Strong Data Typing and the Ability to Check during
Compilation and Execution

"Type" is defined as the domain of allowable values that an object may possess and the set of
operations that may be performed upon the object. "Typing" refers to the enforcement of the
class of an object, which prevents objects of different types from being interchanged or, at most,
allows them to be interchanged only in very restricted ways. Typing is one of the fundamental

20

CC

0

a' C' 0

.0

U e

m 00(4 C
-~ 0

-o1

CV

C-o Mi ci
00

o0 en -q ONci r*

~~ 00 -

- ci a' c
.~ ci 0 - 0

r~ --- -m.

- - '- c21

elements of the object-oriented approach. "Strongly typed" is a characteristic of a programming

language, according to which all expressions are guaranteed to be type-consistent.

C provides only limited compile-time type checking, and does not type check function

arguments at all. On the other hand, the type checking features of C++ strongly encourage a

programmer to declare the types of the arguments of all functions. Ada is a strongly typed

language that performs all binding at compile-time. The types of all data are declared explicitly,

and all decisions are made by the compiler at compile-time, not by objects at run-time. The

information is summarized in Table 2.3.

Table 2.3: Data Typing, Compilation and Run-Time Checking

Languages C C++ I PM

Strong data typing No Yes Yes No

Comp-time checking Yes Yes Yes Yes

Run-time checking No No Yes No

2.6 Support for Object Oriented Programming

Programming languages may be grouped into four generations, according to whether they support

mathematic, algorithmic, data, or object-oriented abstractions. The most recent advances in

programming languages have been due to the influence of the object model. A language is

considered object-based if it directly supports data abstraction and classes; an object-oriented

language is one that is object-based, but provides additional support for inheritance as a means

of expressing hierarchies of classes. The language features for object-oriented programming are

summarized in Table 2.4. The definitions of the terms in the table can be found in the glossary
section of Chapter 1.

"* C is neither an object-based nor object-oriented programming language.

"* C++ is a "better C," in that it provides type checking, overloaded functions, and many

other improvements. Most importantly, C++ is an object-oriented programming language.

"* In the current definition of Ada, it is object-based, not object-oriented. However, a

number of proposals would add object-oriented programming extensions to Ada (e.g.,
Classic Ada [7]).

"* PL/M is neither an object-based nor object-oriented programming language.

22

o cj

z z zzz zzz z

> .0

CU .~u
I-. (A (A0 .0. 0 0 w0 0

CIO

00 -0

C2o

u u. 0. ý

323

2.7 Cost/Benefit Data on the Use of Languages

Modem programming practices and available tool support are primary factors responsible for
reducing programming cost and therefore making a language more effective. Tools are
particularly valuable in the Class IE environment because they collect information in a systematic
way that facilitates review (this is of benefit to both the regulatory agency and the licensee).
Even in the absence of specific supporting information a language that has good tool support can
be presumed to possess a higher cost/benefit ratio than one that does not. This does not imply
that the language for which the largest number of tools can be identified is necessarily the most
cost-effective language because only a limited number of tools can be brought to bear on any
given program. The key criteria for cost/benefit studies are therefore that (a) that an adequate
number of tools be available, and (b) that the tools themselves be cost-effective. Tool availability
is discussed in the Section 2.8. The cost effectiveness of tool usage is briefly addressed in the
following.

The PA Computers and Telecommunications (PACTEL) organization conducted a tool
benefits study for the Department of Trade and Industry in the United Kingdom [8]. The main
purpose of the study was to quantify the UK market for software engineering tools and the
benefits available from the use of formal development methodologies. Methodologies were
grouped into two main classifications --- management techniques (project control,
documentation/change control, and quality assurance) and system development techniques (system
specification, software construction, testing, maintenance and amendment). The following
conclusions were drawn from their results.

1. Automated methodologies show greater benefits than manually applied methodologies.

2. Management methodologies show a benefit only if automated.

3. Development methodologies generally show a benefit even when manually applied.

A survey was conducted for DoD by the Institute of Defense Analysis to investigate the
areas of commercial Ada use in an effort to encourage better informed investments in the
development and implementation of Ada products by the commercial community [9]. The
findings of the study reveal that selection of Ada programming language is motivated by 1)
increasing confidence in Ada technology, 2) better understanding of Ada, 3) rapidly increasing
number of people who can successfully use Ada to solve a complex software problem, 4)
availability of better Ada products exhibiting better performance and an improved ability to
interface with other languages, and 5) DOD support for Ada. Positive aspects of Ada include:
readability, reliability, and reduced test time. In addition, they found the following language
features useful: package concept, exception handling, generics, flexibility of looping structure,
strong typing, enumeration data types, and record data types. Negative aspects were: changing
a specification part of a low-level package required time-consuming recompilation of a large

24

number of packages. Also, task switch time was too long, preventing the use of tasking in time-
critical applications. The expansion ratio of Ada source code into memory was too large.
Additionally, there was a lack of bit manipulation instructions, non-standard implementation of
interrupts and non-standard implementation of embedding assembler language within an Ada
system.

Recently, the Air Force released to the public a report of a business case study they
conducted to determine under what circumstances a waiver to the DoD Ada requirement might
be warranted for use of C++ [10]. The study concluded that both Ada and C++ represent
improved vehicles for software engineering of higher quality products. The case study used in
the report (the Command Center Processing and Display System --- Replacement) demonstrated
development cost advantages for Ada on the order of 35% and maintenance cost advantages for
Ada on the order of 70% under today's technologies. No reports from non-DoD sources on the
advantages of Ada could be identified.

2.8 Availability of CASE Tools

Computer-aided software engineering tools substantially reduce or eliminate many of the design
and development problems inherent in medium to large software projects. CASE tools employed
in the early phases of software design and development yield lower costs and better results in the
implementation and maintenance phases. This reduces the entire life-cycle cost.

CASE tools can be divided into the following five categories:

1. Configuration management and version control --- coordinate concurrent activities.

2. Development environments --- support requirement analysis, design, coding, debugging,
etc.

3. Static analyzers --- assess the structural attributes of programs.

4. Test tools --- facilitate test data control, coverage measures, etc.

5. Metrics tools --- evaluate behavioral attributes of programs such as complexity.

Table 2.5 lists the number and type of CASE tools for each language that could be
identified in this study. Further information on each tool is provided in the appendix. The
applicability of tools to specific steps in software development will be discussed in the Design
and Development Report.

25

Table 2.5: Summary of Availability of CASE Tools

Languages IAda [C IC++_[PL/M Total

Configuration 2 3 1 0 6
Control

Development 16 16 10 2 44
Environment

Static 8 5 11 0 14
Analyzer

Metrics 9 4 0 1 14

Testing 18 12 7 1 38

Total 53 40 19 4 116

2.9 Summary and Conclusions

In a survey of vendors of nuclear plant protection systems and of government and industry
organizations concerned with software for high integrity systems the following programming
languages were identified as being of interest for current or future software efforts: Ada, C, C++,
and PL/M. The study reported here compared attributes of these languages that are considered
important for the Class 1E application.

The most significant findings of the survey are:

1. C, Ada, PL/M-86 are stable programming lang,,ages, while C++ is an evolving one.

2. All the four languages have adequate directives.

3. C and C++ are superior to kda in compile-time and run-time efficiency.

4. C++ and Ada are strongly typed, while C and PL/M-86 are not.

'static analysis is also performed by the test tools.

26

5. C++ is an object-oriented language supporting object-oriented design directly, while Ada
is an object-based language; C and PLJM-86 have no support for object oriented
programming.

6. Ada and C have large numbers of available CASE tools, C++ has an adequate number
of CASE tools; but PL/M-86 has very few.

Support for strong typing and object-oriented programming are particularly important for
safety critical applications, and C++ is the only language that fully provides these attributes. The
lack of standardization for C++ is expected to be remedied soon (the predominant commercial
compiler constitutes a de facto standard). Ada's strong typing and object-based capabilities are'
acceptable for Class IE applications, and a revision of Ada that will provide object-oriented
capabilities is under consideration but without a firm schedule. Thus, C++ and Ada offer more
benefits than the other languages for future Class IE software development. The greater
efficiency of C++ is likely to give it an advantage in future commercial software development.

27

Chapter 3

Design and Development Criteria

3.1 Introduction

3.1.1 Overview of the Chapter

Design and development of safety critical software can be controlled by a number of criteria that
include:

a. the development cycle, including the definition of activities and of milestones that must
be achieved to mark the conclusion of each activity.

b. item the methodologies used to develop the product and to monitor the process.

c. the required characteristics of the product.

d. the unique identification of intermediate and end items, including tools and support
software (configuration control and configuration items).

Factor c. includes the language aspects (covered in the earlier chapter) and test criteria
and fault tolerance provisions (to be covered in the later chapters), and thus product
characteristics do not receive much attention here. The development cycle (factor a.) is discussed
in Section 3.2 of this chapter. The other factors, b. and d. are discussed under the headings of
standards aiid tools because these are the most effective means by which regulatory oversight
over the essential characteristics of safety critical software can be achieved.

28

The major headings of this chapter are thus: Design and Development Process Models
(Section 3.2), Applicable Standards (Section 3.3), Tool Usage (Section 3.4), and Cost/Benefit
Analysis (Section 3.5). Appendix A represents detail that supports the presentations of text
sections with regard to tool usage and capabilities.

3.2 Design and Development Process Models

3.2.1 Waterfall and Spiral Models

The primary activities that comprise the software design and development process include

"• Establishing requirements

"• Translating these into preliminary and complete designs

"• Implementing the design in code

"• Testing the code

"• Integrating the tested code with hardware and/or other software.

Associated with each primary activity may be requirements for analyses, reviews,
documentation, configuration control, and verification and validation. These requirements are
of particular interest to regulatory agencies and are discussed in that context below.

Classical project management is based on completing and reviewing each of these
activities prior to proceeding to the next one. The strictly sequential phasing of development
activities is referred to as the waterfall model [11] and is the basis of most military project and
software development standards, including MIL-STD- 1521 (Reviews and Audits) and DOD-STD-
2167 (Software Development). It is also used in ASME Standard,NQA-2 Part 2.7 (Quality
Assurance Requirements of Computer Software for Nuclear Facility Applications). Figure 3.1
depicts one version of the waterfall model for software.

In complex projects requirements usually are initially defined only for the most important
characteristics and must be supplemented to reflect design trade-offs and evolving user needs
during later design and development phases. The process of requirements evolution is difficult
to incorporate in a waterfall model and this difficulty, together with problems in applying a single
activities progression to software that contains components of varying maturity (re-used or

29

Cut and Paste

Figure 3.1: The Waterfall Model of the Software Life Cycle

30

commercial software, modified code and completely new functions), has given rise to the spiral
model of software development [12]. The spiral model (illustrated in Figure 3.2) assumes that
requirements will be augmented several times during the course of a project and that other
development activities will have to accommodate these changes. A typical spiral model provides
for the following steps:

1. Skeletal requirements will be translated into a skeletal design which is primarily useful
for identifying the most critical modules (from functional and performance perspectives).

2. After the capabilities of these modules are defined the requirements are enhanced and a
more refined design is generated. This design may be implemented to the extent of
allowing evaluation of functions that carry the highest risk.

3. Following evaluation of this initial design an additional set of requirements will be
compiled that may permit design and implementation of a definitive version of the
software.

While the spiral model maintains all of the key activities of the waterfall model it offers
much more flexibility for their relative phasing, particularly for the purpose of allowing the
requirements and the design to mature during a major portion of the development phase. A
significant consequence is that it permits appropriate scheduling of documentation.

The spiral model is in wide use today. All Class 1E system vendors contacted in the
survey were familiar with it, and most stated that it yields a more realistic representation of
development than the waterfall model. The number of iterations (modifications of requirements
or design) is not fixed, but at least the three stages described above are found in most current
developments.

3.2.2 Regulatory Concerns

Both of the process models described above deal primarily with the information flow between
a sponsor/user and the developer. The concerns of the NRC with respect to the development and
design of Class IE applications focus on the effect of the model on the visibility of quality,
safety and stability aspects of the resulting software and system. The following are typical
monitoring provisions that address regulatory concerns:

a. Analyses (failure modes and effects, fault tree, hazards).

b. Reviews (requirements, design, code, test readiness, test, and operational readiness).

31

Cut and Paste

Figure 3.2: Spiral Model of the Software Process

32

c. Documentation of the product (design, code, database, user and maintenance manuals) and

of the process (development practices, design folders, test plans, procedures and results).

d. Configuration control (of requirements, design, code, and test cases).

e. Verification and validation (verification can be conducted at the end of each development
phase, validation is usually conducted only as part of integration with hardware).

f. Quality assurance (exclusive of verification and validation) such as development and
monitoring of project standards, and technical audits of software products and processes.

Because the waterfall model assumes a single pass through each of the primary
development activities (requirements, design, etc.) there is a presumption that there is also a
single instance of the associated monitoring steps (a-e above). When in actual system
development iteration of a development activity is required, the need for repeating or updating
a monitoring step is frequently overlooked or, although it is recognized, not accomplished
because of lack of resources.

The spiral model inherently allows for iteration of primary development activities and thus
facilitates more realistic scheduling of the monitoring steps. Obviously not every iteration will
require implementation of all monitoring functions but the model provides a good framework for
planning for preliminary and definitive versions of analyses and documents, and for specifying
an appropriate scope of reviews, documents, configuration ma -rement and verification as
development proceeds.

3.2.3 Recommendations

Because of its realistic representation of the development process and its compatibility for
allowing refinement of documentation and other monitoring functions during the development
it is recommended that the spiral model be used as the basis for regulatory review of software
development for Class 1E systems.

3.3 Applicable Standards

To improve the flow of text standards are designated in the following by shortened titles and
without reference to revision letters or dates. The standard listing in Chapter 1 contains the
complete identification of the standards discussed here.

33

3.3.1 Standards Utilization in the Survey

All vendors contacted in the survey were familiar with and claimed ability to meet the
requirements of IEEE/ANS Std. 7.4.3.2 "Application Criteria for Programmable Digital Computer
Systems" and of ASME Std. NQA-2 Part 2.7 "Quality Assurance Requirements of Computer
Software for Nuclear Facility Applications". The IEEE/ANS standard focuses on system rather
than software development; the ASME standard deals with quality assurance. In spite of the
recognized vagueness of the software development requirements incorporated in these documents
there appears to be reluctance to adopt a more comprehensive document for industry-wide use.
Most of the vendors were familiar with DOD-STD-2167A "Defense System Software
Development" but saw no general applicability to Class lE systems. However, all vendors stated
that they had internal software development procedures that went considerably beyond the
IEEE/ANS and ASME standards. None of these were made available for use in preparing
regulatory guidance.

Related standards that were discussed by multiple vendors included:

MIL-STD-483 Configuration Management Practices [fI

MIL-STD-1521 Technical Reviews and Audits [h]

MIL-STD-1629 Failure Modes, Effects, and Criticality Analysis [ij

IEEE P-1228 Software Safety Plans (still under development). [m]

In most cases the discussion indicated readiness to apply only fairly narrow provisions
of these standards. MIL-STD-1629 was discussed as being applied to hardware only and as
needing considerable tailoring to include software.

A positive aspect of the currently utilized standards is that they cover both product and
process aspects of the software, and that thus a precedent is in place for review of the software
development process as part of regulatory approval. This facet of standards utilization is further
discussed in Section 3.3.5 --- Regulatory Concerns.

3.3.2 Current and Evolving U. S. Standards

3.3.2.1 U. S. Military Standards

34

U. S. Military Standards pertinent to software development are listed below, together with a brief
explanation of their relevance to the development of Class IE software. A specific version of
the standard is listed only where pertinent features have been added recently. An overall
assessment of these standards is presented following the listing.

MIL-STD-785 Reliability Program for Systems and Equipment [n]

This is a hardware reliability standard which contains two key tasks that are
valuable for evaluation of Class lE software: Task 104 --- Failure reporting,
analysis, and corrective action system (FRACAS), and Task 105 --- Failure
Review Board (FRB). Combined hardware/software implementation of these tasks
is desirable in that it prevents losing track of reports on failures for which it is
not immediately obvious whether they are caused by hardware or software.

MIL-STD-882B System Safety Program Requirements [o]
+Notice 1

Notice 1 has added important software considerations to this originally exclusively
hardware oriented document. Tasks 302 -- 307 include references to System
Safety-Critical Computer Software Components (SSCCSC). Key provisions are
identification of software elements in the top-level design hazards analysis, a
requirements that code developers be made aware of the safety related functions
implemented in the code, and for code level software hazards analysis,
software/user interface analysis, and software change hazard analysis.

MIL-STD-1629 Procedures for Performing a Failure Modes, Effects, and Criticality
Analysis (FMECA) [i]

Although primarily hardware oriented, this standard permits a "Functional
Approach" to FMECA (par. 3.2) which permits applying it to software or to
combined hardware/software entities. In addition to the tabulation of failure
modes and effects (which is valuable for review of monitoring, circumvention and
defense-in-depth provisions) the standard contains requirements for identifying
single point failure modes and ranking failure modes by criticality. The FMECA
can be made more valuable by requiring FRACAS (see MIL-STD-785 above) to
list the applicable failure mode from FMECA, thereby identifying missing or
incorrect listings in the FMECA.

35

MIL-STD-2167 Defense System Software Development [e)

This standard is aimed at software for mission-critical computers in an
environment where software is developed by a contractor for use by military
agencies. The standard has been criticized for being excessively detailed,
requiring too much documentation, and being inconsistent with the use of the most
recent programming languages (including Ada). All of these objections arise from
provisions in Part 5 --- Detailed Requirements. However, the General
Requirements of Part 4 (comprising about 9 pages) are much more broadly
applicable and can provided valuable guidance in areas where the IEEE/ANS
7.4.3.2 standard is very vague. An example is Section 4.2 --- Software
Engineering --- which requires that a documented development method be used,
that a defined development environment be utilized, that development files be
maintained, and that memory and processing reserves be specified.

The standards (or identified portions) listed above provide desirable augmentation of the
IEEE/ANS and ASME standards currently accepted by vendors. The military standards
referenced here are used by major software and systems vendors (outside the nuclear power field)
and most were known to the nuclear sy3tem vendors who were contacted as part of the survey.
In some cases automated tools for complying and/or checking compliance with the military
standards exist. Reference to these standards (with tailoring where required) is therefore believed
to be more cost-effective than developing separate and specific requirements for Class 1E
software.

3.3.2.2 Other U. S. Government Standards

FIPS PUB 38 Documentation of Computer Programs and Automated Data Systems (National
Institute of Standards and Technology) [s]

This document provides a very flexible outline for documentation requirements.
For use with Class IE software the applicable documents need to be identified and
safety related headings added to some.

3.3.2.3 U. S. Voluntary Standards

IEEE P1228 Software Safety Plans [m]

36

Although the formal scope of this evolving standard is a safety plan (a document)
it actually addresses requirements for a safety program and thus provides
comprehensive guidance applicable to Class lE software. It does not reference
IEEE/ANS 7.4.3.2 or ASME NQA-2 but does not conflict with these. It
references IEEE software standards for configuration management, quality
assurance, test, etc. Potential weaknesses are (a) parameters required to make
software acceptable are left to be specified in the plan, and (b) there is insufficient
reference to utilization of software engineering tools.

IEEE 1012-1986 Standard Software Verification and Validation Plans [1]

This standard was written to provide direction to organizations responsible for
preparing or assessing a Software Verification and Validation Plan. This standard
may be used by project management, software developers, quality assurance
organizations, purchasers, end users, maintainers, and verification and validation
organizations. If V & V is performed by an independent group, then the SVVP
should specify the criteria for maintaining the independence of the V & V effort
from the software development and maintenance efforts.

3.3.3 Current and Evolving International Standards

IEC Std. 987 Programmed Digital Computers Important to Safety for Nuclear Power Stations
It]

This is a standard for hardware components only which may be of interest for
format and project structure terminology.

IEC Publ. 880 Software for Computers in Safety Systems of Nuclear Power Stations [u]

This is a publication rather than a standard, and it contains some tutorial material,
many recommendations, and numerous sections that sound like specific
requirements but are weakened in the immediate or later context by allowing
alternatives. It is fairly strong in software product requirements, e.g., par. 4.8
which requires self-supervision of the software and also supervision of the
associated hardware. It takes a simplistic view of the software lifecycle and of the
design process (e.g., requiring top-down design but also encouraging re-use of

37

existing software). It contains no requirements for software tool usage and makes
no reference to formal verification or formal specifications.

EEC 65A(Sec)94 Draft Standard: Software for Computers in the Application of Industrial
Safety Related Systems (Equivalent to BSI 89/33006)

This draft standard addresses software that performs safety-critical functions and
also software in protection systems. The requirements are stated in fairly broad
terms. Annexes of a tutorial nature are provided. It emphasizes self-checking
provisions in the code and is also in other respects consistent with EEC Publ. 880
(see above).

3.3.4 Foreign Standards

UK MOD 00-55 Procurement of Safety Critical Software in Defence Equipment (Interim
Standard) [w]

Safety critical software is defined as that which addresses the highest level of
safety integrity defined in MOD 00-56 (see below). The standard consists of two
parts: 1) Requirements and 2) Guidance; the Requirements are extremely rigorous
but are somewhat relaxed in the Guidance volume. A Software Requirements
Specification (plain language text) must be transformed into a Software
Specification (formal notation, with commentary to relate it to the Software
Requirements Specification). The formal specification must be proven to show
correctness and consistency, and animated (transformed into an executable form,
e.g., simulation) to show conformance to the Requirements Specification. Each
subsequent step of software development (preliminary design, detail design, and
coding) must be formally verified against the preceding step. Translation of a
high level language program to object code must be accomplished by a compiler
than meets the requirements of the standard (formally specified and verified), or
the object code must be proven to be correct against the HLL code. There are
also requirements for qualification of the staff, but these reduce to "adequate for
the job". The Guidance acknowledges that there are few tools for any one of the
steps and no complete environment for automating all of the required steps.
Therefore "Rigorous Arguments" are allowed to be substituted for formal proofs
for some verification activities. The Guidance indicates that the procedures are
typically intended for programs that have fewer than 5,000 lines of code (the
standard does not clarify whether this is source or object code).

38

UK MOD 00-56 Hazard Analysis and Safety Classification of the Computer and
Programmable Electronic System Elements of Defence Equipment (interim
Standard) [x]

The standard establishes severity and probability classifications for anomalous action in safety-
critical systems and derives risk classification based on severity and probability. The highest risk
(A) is associated with catastrophic events that have more than remote probability, critical events
that have more than occasional probability, etc. The requirements of MOD 00-55 (see above)
are inferred to be intended only for risk category A. A relaxation of requirements is possible
where a given safety function can be accomplished by two or more independent means. In this
case only one of the functions needs to meet the highest integrity requirements.

Ontario Hydro/ Standard for Software Engineering of Safety Critical Software
AECL CANDU (issued for one year trial use 21 December 1990) [w]

This is a comprehensive standard for software engineering throughout the
development phase. It describes general quality objectives of safety, functionality,
reliability, maintainability and reviewability, and then decomposes these into 11
quality attributes, such as completeness, robustness, and understandability. General
requirements for each development phase are stated in t.erms of the attributes
required for key documents (software engineering products) that mark the end of
the phase. Although the standard is based on a waterfall-like process model, the
concept of requiring quality attributes to be evidenced in documentation is also
applicable to the spiral development model. A desirable result of this approach
is that the regulatory concern with control of the software development process
(which is difficult to enforce) has been translated into requirements for deliverable
products. Appendices to the standard give quite specific guidelines on the manner
in which the attributes shall be demonstrated. As an example, the results of the
Software Requirements Review are to be documented in a Software Requirements
Specification (SRS), and the completeness attribute of the SRS is defined by 14
criteria of which the first three are that the SRS shall:

a. contain or refer to all requirements from the [systems specification] which are relevant
to the software. This includes all functional, performance, safety, reliability, and
maintainability requirements.

b. specify all additional requirements and software implementation design constraints.

c. identify those variables in the physical environment (i.e., temperatures, pressures, display
readings, etc.) that the software must monitor and/or control and represent them by

39

mathematical variables. Monitored variables are those variables the software has to
measure, and controlled variables are those the software is intended to control.

The standard is not a panacea for satisfactory software development (it contains
practically no requirements for the development process proper) but it establishes
concrete objectives that developers and regulatory agencies can agree on. A
significant benefit of this approach is that the general as well as the specific
requirements provide a framework against which methodology and tool
capabilities can be evaluated. For this reason the standard has been selected as
the outline for tools discussion later in this chapter.

3.3.5 Regulatory Concerns

It is desirable to base regulatory guidelines on existing standards because (a) a standard provides
evidence of consensus and acceptance at least within a segment of the affected population, and
(b) familiarity of vendors and users with the standard minimizes the cost associated with
establishing and complying with the regulations. The combination of (a) and (b) also advances
the availability of fully compliant software and systems.

If a viable international standard existed at this time it would receive serious consideration
as the basis for regulatory guidelines because (a) the importance of permitting U. S. vendors to
enter the export market without extensive re-engineering of their products, and (b) the increasing
mutual dependence and collaboration of national licensing bodies. However, the documents listed
under 2.3 do not singly or in combination represent a comprehensive international standard
applicable to Class IE software. The British MOD standards are targeted at defense equipment
and currently do not have international standing. They contain many advanced requirements and
it may be prudent to allow time for evaluation of the effort necessary for compliance as well as
for the effectiveness of the resulting software before using them as a template for Class 1E
applications.

A concept from the U.K. MOD Standard 00-56 that is significant to regulatory activities
is the allocation of integrity requirements where two or more independent systems contribute to
a safety function. Workable definitions for independence are presented in the document, and
these as well as the allocation algorithm deserve consideration in future design, evaluation and
regulatory efforts for safety-related software and systems.

Regulatory acceptance of hardware components usually makes some demands on control
of the process (particularly configuration control) but important design characteristics, such as
the number of independent channels and absence of common failure modes can be determined
by on-site inspection and reference to installation drawings. In software the relative emphasis
is reversed: the most sensitive attributes are embodied in the specification and design and become

40

increasingly difficult to examine in later product stages; inspection of the executable code present
at the installation does not by itself constitute a significant part of the acceptance process. Thus,
standards that form the basis for regulatory action must encompass the entire development cycle
and the recent tendency is to focus particular attention on the requirements phase because faults
introduced there are very difficult to detect and usually extremely costly to correct at the later
stages.

In this regard it is encouraging that the need for control of the development process is
accepted in all the significant standards cited above. However, except in the U.K. MOD Std. 00-
55 and in the Ontario Hydro Standard, comprehensive and verifiable criteria for the software
requirements and software specification are notable by their absence. Even the 00-55 document
with its heavy emphasis on formal methods in the verification of the specification addresses
completeness of the software requirements or misinterpretation of the requirements in arriving
at the formal specification only in terms of "animation" (not a particularly exhaustive approach).

3.3.6 Recommendations

Because it explicitly addresses Class IE systems and software and because of its acceptance by
vendors and licensees the IEEE/ANS Std. 7.4.3.2 is recommended as one of the baseline
documents for regulatory guidance. The standard is currently undergoing revision, and the
working group is evaluating adoption of some of the features of IEC Publ. 880 which is also a
specific nuclear reactor protection system document. The participants should be motivated to
incorporate features identified as desirable by the international community for reasons discussed
at the beginning of Section 2.5. The working group may want to direct its attention to at least
the following material from the 1EC publication.

" requirements for self-monitoring of the code and monitoring of the hardware status. This
is not novel but it is more clearly formulated in Publ. 880 than in other standards
documents.

" adoption of the document content criteria for Class I E systems and software requirements,
based on the Ontario Hydro Standard.

The revised IEEE/ANS standard can serve as a framework that references other U. S.
standards, e.g., DOD-STD-2167A for selected documentation, MIL-STD- 1521 for format and
content of reviews, and MIL-STD-785 for failure reporting and failure review board tasks.

The IEEE P-1228 Software Safety Plans effort may eventually make contributions in its
stated sut~ject area and also in the conduct of the overall software safety program. However.

41

because it is still evolving and is not directly targeted at nuclear plants no specific
recommendations for its inclusion in regulatory guidance are made.

The adoption of selected features of the U.K. MOD Std. 00-55 and 00-56 may best be
handled as regulatory guidance from the NRC. The U. K. documents are not specifically targeted
at nuclear reactor systems and thus interpretation and tailoring will be required. Particularly
significant provisions from 00-56 are the risk classification and allocation of integrity criteria for
multiple independent actuation of safety systems. In the 00-55 standard the emphasis on
segregating modules that serve highest integrity functions from others appears very beneficial.
The section on staff qualifications, though rather weak at present, may be adopted as a minimum
requirement until more specific requirements can be coordinated. The reliance on formal
methods is discussed in Chapter 5 of this report.

3.4 Tool Usage in Design and Development

Software tools can speed up the development and design process, reduce the amount of labor
required, and make the quality less dependent on skills of the assigned staff. This latter benefit
is of interest to regulatory agencies because personnel qualification criteria are difficult to
implement and enforce. The vendors contacted in the survey were uniformly opposed to
mandatory certification requirements for either the working level professionals or their
supervisors. An additional advantage of tool based software development from the point of view
of a regulatory body is that the documentation will be more uniform than that manually generated
and thus more easily reviewed.

Against these arguments for tool usage must be weighed the considerable cost of tool
usage, particularly of the introduction of tools. As with any piece of software, the more capable
the tool the more difficult it is to learn to use it effectively. In addition, many tools require
changes in the approach to design and development and affect many layers of the organization,
including some that do not benefit directly from tool usage. For this reason there is frequently
resistance to the use of tools and tool abandonment when initial expectations are not met, either
due to limitations of the tool or due to inadequate training.

For Class 1E software the benefits from use of tools during design and development are
expected to outweigh the disadvantages, particularly in the long run. The emphasis in the
following paragraphs is therefore on the evaluation of the capabilities of tools against quality
requirements arising during design and development of Class 1E software. As the frame of
reference for these requirements the quality attributes listed in Appendix A. 1.1 of the Ontario
Hydro/CANDU Standard for Software Engineering of Safety Critical Software [a) has been used.
The software quality attributes are identified for four documents that are associated with
milestones in the software development process:

42

"* Design Input Documentation (DID)

"* Software Requirements Specification (SRS)

"* Software Design Description (SDD)

"* CODE.

The capabilities of a selected list of available software tools is evaluated against the requirements
established in the Ontario Hydro standard for these documents. A classification of pertinent tool
features and a description of the tools selected for this evaluation are presented in Appendix
A. 1.1. The analytical evaluation of tools
against the requirements for each of the four documents is shown in Appendices A. 1.2-A. 1.5.

The central issue under this topic is to determine the extent to which currently available
tools can automate the generation of key documents required for review of the development
process and of the delivered code. As shown in the following table, a very encouraging picture
emerges.

Table 3.1: Tools Coverage

Deliverable Total Number of Number of Attributes
Major Attributes Not Covered by Tools

Design Input Documentation (DID) 14 2

Software Requirement Spec (SRS) 8 1

Software Design Document (SDD) 9 0

Code 9 0

Total 40 3

In this tabulation an attribute is considered covered if major feature requirements arising
from the attribute are covered. As an example, for the Consistency attribute in the SRS the
following major feature requirements were considered (See Appendix A. 1.3, Table A.5):

"* Petri nets.

"* State charts.

43

"* Consistency checking.

"• Scenario generation.

In this instance all features are supported by tools but it is still obvious that there remains
a need for much analyst effort. The tools are particularly effective in takir - on the repetitive
parts of the job and in providing a framework for uniform, consistent input and output. These
are very substantive benefits for both the developer and the regulators.

The attributes not covered by software tools are:

"* Factor in relevant experience (for DID).

"* Provide a clear definition of terms (for DID).

"" Verifiability (for SRS).

The first two of these can be partially automated with ordinary database and/or word
processing programs. The concept of verifiability involves traceability between levels which can
be partially automated if a formal specification language and a coordinated tool is used.

A further question that arises under this heading is how many tools will be required to
achieve the degree of automation that is indicated in Table 3.1. Here, again, very encouraging
circumstances were encountered. A few of the tools are so capable that they can individually
automate about 85% of the total attributes and up to 100% of the attributes for a given document.
A combination of two or three tools can provide close to 100% attribute coverage (for the
attributes indicated as covered in the above discussion). These findings are substantiated by the
listing of specific tool capabilities in Appendices A. 1.2 -- A. 1.5.

Each appendix first identifies the attributes for the given document obtained from the
Ontario Hydro standard. It then tabulates tools capabilities for each attribute and finally
summarizes tools capabilities for all attributes identified for this document by a numerical score.
This score is based solely on the number of tool features that support the automation of the given
document. The information on tool feature was obtained from commercial brochures and bulletin
boards. Within the scope of this effort the actual existence of the features could not be verified,
nor was it intended to evaluate ease of use of tools or the quality of their output. The purpose
of this study is to identify tool coverage, not to provide guidance for tool selection. Therefore
neither the exclusion of a tool from the list of those evaluated nor a low numerical score in the
summary tables should be taken as an indication of lack of suitability for Class It, applications.

44

3.5 Cost-Benefit Analyses

The topics discussed in this chapter deal with the design and development methodology for Class
1E software and the conclusions drawn from this discussion may affect the development cost.
An analysis of the potential cost-benefit relations is therefore presented below.

As a basis for this assessment it is assumed that equipment containing Class 1E software
will not be licensed unless the NRC is certain that it meets its safety criteria. Therefore the
trade-offs are not between development methodologies that yield different levels of safety or
reliability but rather between the cost incurred by various methods in demonstrating that the
licensing criteria have been met. Where failure consequences are affected, their economic impact
can be evaluated from data presented in [58].

The costs to be considered are those borne by the licensee and those incurred by the NRC.
The software developer's costs are assumed to be passed on to the licensee and are therefore
treated as part of the licensee's cost. The most direct way in which NRC actions will affect the
total cost is by issuance of a Regulatory Guide that endorses a given standard and/or requires
submission of specified documents. The underlying cost driver is the latitude permitted in
selecting design and development methodologies as indicated in the following table.

Table 3.2: Cost Effects of Methodology Selection Criteria

Cost Element Loose Criteria Intermediate Criteria Strict Criteria

Licensee: Development Cost Low Medium High

Licensee: Delay of Approval High Medium Low

NRC: Cost of Processing High Medium Low

An example of loose criteria is the present version of IEEE/ANS 7.4.3.2 without
additional guidance. An example of intermediate criteria is the Ontario Hydro standard because
it has tight requirements on deliverables but very few on the means for generating them. An
example of strict criteria is the UK MOD Std0055 which requires specific methodologies.

The increase in development cost as criteria are tightened is due to the developer having
to adapt to new practices, possible denial of commonality with other applications of the same
software, and, particularly in the case of strict criteria, forcing the use of an inherently higher
cost approach. The delay of approval cost is directly associated with the processing cost within
the NRC. With loose criteria a given application requires much more staff effort and time for
review, and during that interval the licensee must wait for approval. Also factored in the delay

45

of approval cost element is the expected cost of modifications to the software or the installation
that may be required to obtain a license. Loose criteria introduce uncertainty into the licensing
process that is undesirable for all parties.

The following numerical examples consider two software development scenarios:
comparatively low unit development cost for software that has many Class 1E applications, and
comparatively high development cost for software that has only a few Class IE applications. The
delay of approval cost and the NRC processing costs (both as identified in the proceeding
paragraph) are held constant. The examples therefore serve as a general sensitivity study with
respect to the ratio of increasing and decreasing costs. In the following table the low and high
unit development cost assumptions are separated by a slash (/).

Table 3.3: Numerical Cost Effects

Cost Element Loose Criteria [Intermediate Criteria Strict Criteria

Licensee: Development Cost 2/20 4/40 8/80

Licensee: Delay of Approval 20 10 5

NRC: Cost of Processing 10 5 3

Total 32/50 19/55 16/88

It is seen that loose criteria do minimize total costs for the high unit cost assumption and
strict criteria minimize the total cost in the case of low unit cost. However, the cost differential
between intermediate criteria and those having the lowest cost in each case is very small and may
vanish if a realistic assessment about the cost apportionment is introduced (for loose criteria and
high unit cost the delay may be more costly than indicated and for strict development criteria the
cost of customizing standard software will probably be higher than allowed for). It is therefore
concluded that intermediate criteria represent a cost-effective basis for regulatory requirements.

3.6 Conclusions

Three major factors that affect the design and development of Class 1E software were
investigated in this chapter:

"* the life cycle model.

"* current applicable standards.

46

• design and development tools.

In addition, cost-benefit relations for a regulatory approach were evaluated.

In the study of life cycle models it was found that the spiral model of software
development was the most suitable one because it recognizes that requirements are evolving
during development rather than being fixed at the outset. This acknowledgement of evolving
requirements permits realistic scheduling of milestones for delivery of documents for review of
the development process.

In the standards area it is concluded that IEEE/ANS Standard 7.4.3.2-82 [b] is the most
widely accepted one and has the potential of serving as a starting point for regulatory guidance.
However, its present content provides wide latitude for the development process as well as for
the delivered product. The current standard therefore does not provide assurance that compliance
with it will assure suitability of software for Class 1E applications. A recent standard created
under the auspices of Ontario Hydro [a] incorporates review of the development process into four
deliverable products each one of which must meet reasonably well defined criteria. This standard
is still being evaluated in Canada but appears to be a good statement of requirements that
regulatory agencies can levy on software development and that developers can meet with
available technology. As explained in connection with Table 3.3 this standard has achieved an
efficient balance between loose and excessively tight controls on software development.

The evaluation of design and development tools showed more than a hatf dozen products
that can make substantive contributions to the development process. Several of the tools studied
could individually compile information that satisfies the majority of the requirements established
in the Ontario Hydro standard, and a combination of two or at most three of these tools could
address all requirements for which a software development tool could reasonably be applied.
Therefore regulatory guidance should be formulated to be readily compatible with tool use
although it may not be desirable to make tool use mandatory (and certainly not the use of
specific tools).

The cost-benefit assessment showed that an intermediate level of control over the
development process will probably lead to minimum cost for the community that comprises both
licensees and the NRC. Loose criteria minimize the development cost and this leads to low
overall cost when only very few copies of the software are installed, and very strict criteria may
lower cost when many copies of exactly the same program are installed. But both of the extreme
approaches have very adverse cost consequences if the assumptions about the number of users
are not met. The intermediate approach is relatively insensitive to the number of installations
and is recommended. The Ontario Hydro standard is regarded as an example of intermediate
criteria.

47

Chapter 4

Test Methodology and Criteria

4.1 Introduction

4.1.1 Overview of the Chapter

Software testing is a dynamic verification technique that exercises the software by supplying it
with input values usually selected by the verifier. The term dynamic refers to changes (due to
selected input values) in the data controlled by the software under test; it distinguishes testing
from other verification techniques, such as design or code audits, in which agreement with the
stated requirements of a preceding phase is assessed by informal or formal reasoning. Testing
is frequently considered to be a part of the quality assurance activities. This is usually true for
the late stages of test but not necessarily of the early ones, such as unit test. Also, within this
document the generation of test plans and specifications is considered within the scope of test,
and this is not usually the responsibility of the quality assurance function.

Testing is always partial as it is not feasible to exercise software with each possible
sample from the whole input domain. The tes~tr is then faced with the problem of selecting a
subset of the input domain that can best reveal the expected but unknown faults, and determining
when the test can be terminated. Test of safety critical software will be guided by a number of
subjective considerations that include:

a. Test activities in the software lifecycle.

b. Selection of strategies used to test the product.

c. Test termination criteria.

48

These three topics form the major subdivisions of the section on technical considerations. The
major headings for the body of this chapter are:

Section 4.2: Technical considerations for Class lE software test (this addresses the three topics
mentioned above)

Section 4.3: Management considerations for Class IE software test (including qualifications of
test personnel, selection of standards, and tools and support software)

Section 4.4: Criteria for review of Class 1E software test programs

Section 4.5: Conclusions and recommendations

Sections 4.2 and 4.3 provide general background while Section 4.4 addresses specific
needs of reviewers of test programs.

4.2 Technical Considerations for Class 1E Software Test

4.2.1 Testing in Software Lifecycle

The software lifecycle involves a sequence of managerial and technical activities which can be
grouped in phases as discussed in Section 3.2. Although the phases tend to overlap and the
process can be iterative, there is always a moment in which a specific phase is formally
concluded with the acceptance of the deliverable items.

Software test affects activities in all of the software development phases. As a lifecycle
process, software test supports:

"* Early detection of software problems.

"• Preparation of appropriate test facilities.

"* Consideration of the user interface requirements during software development.

4.2.1.1 Major Lifecycle Testing Activities

49

The major activities for testing in the software lifecycle are shown in Table 4.1.

It is seen from the table that tests are executed in the inverse order in which the planning
takes place. Particularly long time intervals will usually elapse between the planning for the
system (combined hardware and software) test and its execution, and between the planning for
the software acceptance test and its execution. Project management must allow for updating of
the requirements and plans for these tests at regular intervals in order to have current documents
available for the test teams. To minimize the need for updates the preparation of the test
procedures (detailed documents that govern equipment configuration, test case sequence, and
interpretation of test outcomes) can be deferred until shortly before the test is to be conducted.
The sequence of tests shown in Table 4.1 is consistent with that prescribed in DOD-STD-2167A
[e] with the following nomenclature changes: software acceptance test instead of CSCI test in the
DOD standard, and system test instead of system integration and testing in the DOD standard.
The system test is usually an essential part of the validation procedure and is in some documents
referred to as validation test.

The OH/AECL Standard for Software Engineering of Safety Critical Software [a] adds
a requirement for a reliability test which is intended to be conducted after the system (validation)
test. The general planning for the reliability test can be accomplished concurrent with that for
the software acceptance test, and this should be augmented by detailed planning after the software
structure has been completely defined, typically after coding. The methodology employed for the
reliability test is largely identical with that of the system test (test scenarios selected from
expected usage environment) but test duration and random parameter selection are oriented
toward obtaining statistically significant test results.

Where the spiral model for software development is used, the applicable test sequence is
repeated for every pass through the spiral. During early cycles through the spiral the systems,
acceptance and integration test requirements may be abbreviated or even absent but during the
final pass all will need to be documented and executed.

Regression testing is not covered separately in this presentation because the methodology
and criteria used are based on those of the test that is being repeated. Thus, regression testing at
the unit level will use criteria described here for unit testing, and regression testing at the
software integration level will use the criteria described here for software integration testing.

4.2.1.2 Objectives and Requirements

The objectives and requirements for each test are as follows:

Unit Testing The objectives of unit testing are to verify that implementation of software units,
modules, and subelements, is consistent with the Software Design Document (SDD), that the

50

0 0
Ow CIO

~ ~ 0

UW,

U 0

40. 42 40.-.

C.) 4) 00 0t D

0 0- 04
-~ bO~~b4-(0

0~ 4) ~ .-r-

00

o ~ ~ 9 4)4

42 4--., Q0

o ~ UU
4) ~ '-~44 C) P)0

'.4-4~ >. 00 4-40 51

* =mod

units do not perform unintended functions, and that their interfaces behave as specified in the
SDD.

All of the following requirements for unit testing of Class 1E software shall be met by
modules directly involved in a protective function. The overall purpose of these requirements
is to exercise the program for all conditions that may cause incorrect or unintended system
operation. Abbreviated requirements may be used for support modules (report generation,
logging, etc.).

"* Each unit shall have a Software Unit Test Specification which the module shall be tested
against.

" Functional unit test shall define a sufficient number of structural test cases, derived from
the analysis of the SDD, to ensure that the executable code for each unit behaves as
specified in the SDD. The number of test cases shall be considered sufficient when they
include:

- all possible outcomes for decisions derived from the SDD,

- all possible conditions for each decision,

- test on each boundary and values on each side of each boundary for each input.

If the functional unit test is conducted with a dynamic analysis tool, the results of
the functional test can be used to satisfy many requirements of the structural and
special values test defined below.

" Unit test shall define a sufficient number of test cases, derived from the analysis of the
code, to ensure that the executable code for each unit behaves as specified in the SDD.
The number of test cases shall be considered sufficient when they cause to be executed
at least once:

- all possible conditions for each decision (this also assures executions of each
statement and of each decision outcome),

- each loop with minimum, maximum, and at least one intermediate number of
repetitions,

- all possible paths with loops with zero and one execution,

- cause a read and write to every memory location used for variable data

- cause a read of every memory location used for constant data

52

Unit test shall include test cases to cause each interface requirement to be exercised.

These requirements are substantially consistent with those in Appendix C of [a]. Higher
assurance of correct behavior and the absence of unintended functions can be achieved by path
testing (see Section 4.2.2.2). This requires many more test cases and should be reserved for
functions requiring highest integrity.

Software Integration Testing The objective of software integration testing is to verify that all
functional and performance requirements for the integrated software are met. Testing of
interfaces and of data flow between modules is essential to meeting this objective but very little
specific guidance for these steps could be found in the literature. The following requirements
are therefore largely based on the author's experience.

" Interfaces shall be exercised with a sufficient number of combinations of parameters to
insure functioning under all operational and exception states. The following interfaces
are included in this requirement:

between developed software modules or units
between developed software units and non-developed (off-the-shelf)

components
between non-developed software components with external software or

devices (simulated as necessary)

" Calling sequences shall include cases of missing and illegal parameters.

" Called units or devices shall be exercised with simulated busy and inoperative states and
with check code error conditions where these may be encountered.

" All modes of data transfer between modules shall be exercised

For very large software products integration testing may be conducted in phases,
progressing from small aggregates of modules to larger ones. In some documents the term
subsystem test or subsystem integration test is used for the initial phases of the software
integration test.

For highly time critical systems, performance issues may also be included in the
integration test, and for systems where security is very important this issue may also be
addressed. For the broader class of systems these areas are assumed to be tested as part of the
software acceptance test.

53

Acceptance Testing The objective of the software acceptance test is to determine that the
software product complies with the specification. Since the specification defines not only the
required software functions but also performance (speed of execution) and other attributes the
acceptance test must be designed to include the entire scope of the specification. According to
a recently published Guide to Software Acceptance [13] the following categories are typically
covered:

"* Functionality

"• Performance

"* Interface Quality

"" Overall Software Quality

"* Security

"* Software Safety

Consistent with the above stated objective, the detailed requirements for the test are
derived from the software specification. For some of the categories audits or reviews may be
used to supplement or replace test. If neither the code nor the test environment has significantly
changed between the integration test and the acceptance test the results of the former can be used
to partially satisfy the latter.

System Testing The objective of system testing is to validate the entire program against system
requirements and performance objectives. It is in some documents referred to as validation
testing. It is conducted on target hardware interfacing with an actual or simulated plant
environment.

The following requirements have been adopted from [a].

" define test cases to test each functional requirement in the System Requirements
Specifications (SRS).

" define test cases to test the performance requirements as described in the SRS.

" define test cases to exercise any interfaces between the software and the target hardware,
and its environment.

54

41

" define test cases to test the ability of the system to respond as indicated in the SRS to
software, hardware, and external errors.

" define test cases, using dynamic simulation of input signals, to cover normal operation,
anticipated operational occurrences, abnormal incidents and accident conditions.

4.2.2 Software Test Strategies

4.2.2.1 Top Level Test Strategies

The following paragraphs present an overview of software test strategies that have been discussed
in the recent literature. In the opinion of the authors of this report some of these strategies have
little or no immediate applicability to the testing of Class 1E software but they are included to
permit each reader to formulate an independent assessment. Recommendations for the evaluation
of Class IE test programs are presented later.

Functional Testing Functional testing [14] is popular in industrial and commercial software
applications. It is a black box approach in which the functional properties of the requirements
or specifications are identified and test data selected to specifically test each of those functions.

There are two problems with this approach. First, although requirements and
specifications provide many meaningful functions that can be the focus for functional testing,
software may contain a much richer collection of functions than those put forth in specifications.
Moreover, specifications are often inadequate for providing the detailed information required for
testing. Another problem has been the lack of any unifying and fundamental theoretical basis
for such testing. Thus the industrial efforts using functional testing are both ad hoc and
incomplete in scope. Nevertheless, functional testing is appropriate as a first step in the testing
of Class IE software.

Structural Testing Structural testing is a white box approach in which explicit knowledge of
the software under test and its structure is used to generate test data and to evaluate the
thoroughness of test [15]. Structures such as branch and path are determined by program control
flow. The fraction of program constructs that is structurally exercised is called "coverage."
Structural testing aims to detecting discrepancies between functional specification and software
implementation by exercising a program based on its structural properties.

Research has shown that there are inherent limitations to the use of structural testing
alone, for test data based only upon the software code and structure will fail to detect the absence

55

of certain features that might be missing in the software. Information and the associated test data
must be derived from the software specifications, design documents, or from some other source.

Most current standards for critical software require a combination of functional and
structural testing.

Random Testing Random testing is a black box approach in which a random value is selected
for each input variable of the program and each test data point then consists of the collection of
these. The randomness of the test data makes the technique potentially useful for discovering
unintended functions.

The random data may come from a uniform or normal distribution covering the entire
range, or from a distribution that randomizes around boundaries of routine and disturbed
operation. The random walk process in which small increments from the initial condition are
generated is also a useful means for generating test data. Data from known or suspected prior
failures may be used to define the initial conditions.

In the Software Testing and Evaluation Methods (STEM) experiment at the Halden Reactor
Project uniform random distributions over the entire input domain were found more efficient in
achieving branch coverage than "systematic" methods (based on requirements, etc.) [16]. The
uniform random data also were effective in finding faults. In the STEM experiment a 'golden
version' of the code was available for generating correct output and this facilitated positive
identification of failures. By this means 95% of all natural faults and 99% of seeded faults were
detected.

With knowledge of the STEM findings, the editor of the Techniques Summary of the
series "Dependability of Critical Computer Systems" [17] concludes:

There is some evidence that this test data strategy [uniform random inputs] is
quite effective, giving similar levels of branch coverage, statement coverage and
fault detection efficiency to systematic methods. The main problem is to determine
which tests result in a failure, so this technique is mostly used in conjunction with
comparison testing.

The major advantages cited include:

"* No program and specification analysis is required.

"• A large number of test data sets can be produced with little effort.

56

* Not prone to human bias and 'mind-set'. For example, systematic tests may check that
outputs are set, but not that they are cleared.

The major disadvantage cited is the difficulty of determining the correct response to each
randomly generated data set. This difficulty can be overcome where a 'golden version' of the
software exists that can be used for comparison or through use of a plant simulator which signals
the existence of safe and unsafe states. See also "Evaluation of Random Testing" [18]. The
applicability of random testing in the Class IE environment is discussed later.

4.2.2.2 Lower Level Test Strategies

The following lower level test strategies identify the detailed procedures to be used in the
implementation of the higher level strategies. Definition of a lower level strategy is particularly
important for structural testing where the intensity of the test effort and effectiveness of coverage
are determined by the lower level selection. The probability of uncovering unintended functions
increases significantly in going from statement coverage to condition coverage and increases
greatly by going from condition coverage to path coverage. For these reasons knowledge about
these strategies is important for the evaluation of Class IE software test plans and environments.

Statement Coverage With statement coverage, every statement in the program is to be executed
by the test set at least once. Unless one encounters reachability problems, this is certainly a
requisite of a test plan. It is not nearly strong enough, however, for example consider the
statement

IF X > 0 THEN S;

In this case, we assume a null ELSE statement; thus with statement coverage, the ELSE
condition might never be checked and yet contribute to a serious error. Statement coverage by
itself is not adequate for class IE software testing.

Branch Testing In branch testing (or decision coverage) each predicate decision assumes a true
and a false outcome at least once during the test set execution (or each possible outcome for a
CASE statement). This coverage criterion clearly overcomes the problem with the null ELSE
example previously given, but there are problems with decision coverage as well.

For example, consider a program with two successive IF-THEN-ELSE constructs; if tests
are selected which execute the THEN-THEN alternative of these predicates, as well as the
ELSE-ELSE alternative, then this criterion is satisfied. Yet the THEN-ELSE alternative is not

57

adequately tested, and might well be in error. Complete branch coverage also provides complete
statement coverage.

Condition Coverage Another weakness in branch testing is encountered with compound
predicates such as

IF (A > 0) AND (B <5)

Branch testing will treat this compound predicate the same as a simple predicate, testing
only for true and false outcomes and ignoring the fact that a false outcome could occur from two
distinct Boolean clauses. For this reason, a condition coverage will require that, during test set
execution, each condition in a compound predicate assumes all possible outcomes at least once.
Complete condition coverage also provides complete branch coverage.

Path Testing A path is any sequence of statements that can be traversed in the execution of a
program or program segment. Path testing is based on the use of the control flow of the
program. Path testing involves two operations:

1. selection of a path or set of paths along which testing is to be conducted,

2. selection of input data to serve as test cases, which will cause the chosen paths to be
executed.

Because of the presence of iteration loops, there is potentially an infinite number of
distinct paths in a program. Even in a program without iteration loops, the number of distinct
paths, is an exponential function of the number of predicates in the program. Thus, for any
nontrivial program it is very difficult to generate test data for all paths in that program.

One of the advantages of path testing is that it tends to be easier to automate than other
approaches, such as functional testiihg. Complete path coverage also provides complete condition
coverage.

Data Flow Testing Data flow testing selects test data that exercise certain paths from a point
in a program where a variable is defined, to points at which that variable definition is
subsequently used. By varying the required combinations of data definitions and uses, a family
of test data selection and adequacy criteria was defined [19]. The data flow criteria can be used
to bridge the gap between the requirement that every branch be traversed and the frequently

58

impossible requirement that every path be traversed. The criteria focus on the interaction of
portions of the program linked by the flow of data rather than solely by the flow of control.
Thus, not only do the criteria fall in between branch testing and path testing in terms of difficulty
of fulfillment, they also guide us in the intelligent selection of paths for testing. Data flow
testing is potentially useful as a component of Class 1E software testing but is not currently
identified in any major standard and is not automated.

Partition Testing The partition analysis method [20] compares a procedure's implementation
to its specification, both to verify consistency between the two and to derive test data. Partition
analysis selects test data that exercise both a procedure's intended behavior (as described in the
specifications) and the structure of its implementation. To accomplish these goals, partition
analysis divides or partitions a procedure's domain into subdomains in which all elements of each
subdomain are treated uniformly by the specification and processed uniformly by the
implementation. This partition divides the procedure domain into more manageable units.
Information related to each subdomain is used to guide in the selection of test data and to verify
consistency between the specification and the implementation.

Partition analysis testing is a powerful testing strategy because (1) it integrates several
complementary testing criteria; (2) the selected test data exercise the procedure based on both the
implementation and the specification. As such, it is one of the few testing strategies to address
missing path errors. There are several problems with partition analysis testing that must be
addressed. In particular, the proposed testing criteria may result in an excessive number of test
points, and most of the them are difficult to implement. Partition testing is not widely practiced
and because of the limited experience with this method it is currently not recommended for Class
lE testing.

Domain Testing An input space domain is defined as a set of input data points satisfying a path
condition, consisting of a conjunction of predicates along the path. The input space is partitioned
into a set of domains. Each domain corresponds to a particular execution path in the program
and consists of the input data points that cause the path to be executed. The boundary of each
domain is determined by the predicates in the path condition and consists of border segments,
where each border segment is the section of the boundary determined by a single simple
predicate in the path condition. In domain testing test points are generated for each border
segment, which, if processed correctly, determine that both the relational operator and the
position of the border are correct [211.

One of the major advantages of domain testing is that, subject to the assumption of a
linearly domained program, reliable detection of domain errors requires a reasonable number of
test points for a single path. This number of test points grows only linearly with the number of
predicates along the path and the number of input variables. The applicability of domain testing
to the Class IE environment is related to that of path testing.

59

Mutation Analysis Mutation analysis has emerged as providing an approach for evaluation of
test data and test methodologies. A mutant program is one in which a statement (or an object
instruction) has been changed. A test data set that identifies many mutants can be assumed to
also identify native program faults.

Mutation analysis can be viewed as providing a measure of test data quality, and there
have been a number of proposals to utilize this analysis in an iterative mode to improve the given
test set.

Howden [22] has referred to mutation testing when some of the techniques of mutation
analysis are applied to test-set selection. Specially this refers to the construction of tests designed
to distinguish between mutant programs that differ by a single mutation transformation.

The underlying assumptions of mutation analysis are still quite controversial and there are
serious problems in the implementation. Even a small number of mutation operators can lead
to an enormous number of mutant programs. Another problem is the issue of equivalent mutants,
and how surviving mutants can be identified as equivalent to the given program or not. It is of
interest to Class 1E software only for the comparative evaluation of alternative test approaches.

Symbolic Evaluation In symbolic evaluation, input variables assume symbolic values and output
variables are expressed in terms of these symbols. These output variable expressions can then
be examined to see if the program is computing the functions intended [23].

Many times the symbolic evaluation approach will show errors that might be difficult to
determine using other methods. However, for this approach to be effective, the symbolic
expressions should not be too complex; if they are too complex, their usefulness becomes limited.
The strategy is of little immediate interest for Class IE software.

4.2.3 Test Termination Criteria

A fundamental limitation of software testing is that practical programs cannot be tested
exhaustively in the sense that the combination of every point in the input domain with evcry
permissible computer state is exercised. The recognition of this limitation has given rise to the
frequently quoted dictum "Testing can only show the presence of bugs, but not their absence".
Further, any attempt to use statistical methods to establish confidence in the absence of failure
mechanisms must be based on equivalence of the failure inducing stresses between the test and
use environments. Even where this can be shown to exist, a test interval of five to ten times the
desired failure free interval is required to establish confidence levels of 80% to 90% in the
achievement of the desired reliability [g]. Thus, to demonstrate 90% confidence in the
achievement of a mean-time-between-failures (MTBF) of I million hours, a test time of 10
million hours (approximately 11,000 years on a single computer) would be required.

60

These limitations suggest that the criteria for test termination will for the present be based
on judgment rather than objective reasoning. In the following test termination criteria are
discussed separately for coverage measures and for statistical measures.

4.2.3.1 Test Termination Criteria Based on Coverage Measures

The following lower level test strategies discussed in the preceding paragraph yield structural
coverage measures that are of interest to Class 1E software:

Branch Coverage

Condition Coverage

Path Coverage

Many Class lE projects will use a combination of functional, structural and statistical
testing, and in that event all test cases can be used to achieve the required structural coverage
provided that instrumentation to capture the structural properties of the test data sets is in place.
The instrumentation referred to above consists of counters (for branch or condition coverage) or
token dispensers (for path coverage) that are added to the source code at every decision exit (for
condition coverage the counters are attached to the conditions within each decision). The
counters are incremented every time a program execution passes through the exit to which the
counter is attached. Full branch or condition coverage is achieved when there is a number greater
than zero in every counter. Conversely, missing test cases can be identified by the number of
counters that read zero.

For path coverage a list of feasible paths (identified by the decision exits that are taken)
is constructed, and the actual decision exits taken during a program execution are identified by
the token sequence generated during the execution. The path corresponding to that sequence is
then marked on the list of feasible paths. Unmarked feasible paths remaining at the conclusion
of a test program indicate paths that have not yet been exercised.

The test termination goal in structural testing is typically 100% coverage with a somewhat
lower percentage sometimes given as the minimum requirement. When it is decided to accept
less than full coverage it must be realized that those test cases will be omitted which present the
greatest difficulty in test data selection. These are frequently test cases representing multiple rare
conditions, and it can be rationalized that these are extremely unlikely to arise in operation.
However, the author's experience on a number of NASA programs has shown that paths
containing multiple rare conditions are more likely to contain faults than more frequently
accessed paths, possibly because of difficulties the software designer has in recognizing the

61

actions required by the program to deal with multiple rare conditions. Acceptance of less than
full path coverage will therefore increase the possibility of an operational failure under rare
conditions.

On the other hand, it may turn out to be impossible to generate test cases that access the
entire feasible path list, because some structurally feasible paths are semantically infeasible. An
example is that an event cannot simultaneously occur during the day shift and at a time earlier
than 6 am. Semantically infeasible cases should be purged from the list so that the coverage
measure presented for evaluation is assessed against feasibility under both structural and semantic
criteria.

4.2.3.2 Test Termination Criteria Based on Statistical Measurements

Software reliability measurement and estimation [24] have been used successfully for monitoring
the overall test progress and as a test scheduling tool during the initial stages of test. Overall test
means the interval from start of integration testing through the end of the acceptance test. Test
progress is assessed in terms of the mean execution time between failures (METBF) from one
period (week, etc.) to the next. Because faults are removed as they are discovered during the test
period, and the time between failures is assumed to be inversely proportional to the remaining
fault content, the METBF is expected to increase with test time. Several software reliability
growth models have been formulated that permit monitoring whether the time history of METBF
on a specific project indicates consistent progress [25]. An example is shown in Figure 4.1. The
plot of the residuals (part b) can be used to identify unusual test events, such as the spike in
interval 8.

As Class lE software reaches the acceptance and system test stages the failure rate is
expected to be so low that the reliability estimation models discussed above do not yield
meaningful results. Nevertheless, the models can provide general guidance for the probable
additional test time that will be required to achieve a statistical test termination criterion. In some
cases a minimum failure free interval is specified as an acceptance criterion, and the model can
then be used to determine when the mean-time-between- failures is likely to reach a multiple, say
five times, of the specified failure free interval. The test time forecast by the model can then be
used as a predictor of when a failure free test may be run.

Test cases selected for purposes other than statistical testing may meet the defined criteria
for statistical testing and can be used to achieve the desired statistical coverage. Acceptance and
system testing frequently contain sequences of random data inputs [16].

62

DATA & SCH. MODEL FIT (TYPE 1)
50

40 ..-

30

10

0 4. 6 8, 10 12 14 16

INTERVAL

(a)

RESIDUALS - SCH. MODEL (TYPE 1)
15

1 ...

5 .. 0

.U-----------------w.. -------

-5...

0 l1 1'2 1'4 16
INTERVAL

(b)

Figure 4.1: Reliability Estimation During Test

63

The following describes a statistical test technique that is particularly suited to testing of
safety systems. The operating range of a safety system can be considered to be the transition
region between safe and unsafe operation. While it is necessary to determine that the safety
system does not interfere with normal operation, it is also obvious that the primary focus of
acceptance testing of the system is the transition region. In statistical testing of a safety system
it is therefore appropriate that the input not be randomly selected from the normal operating
range of the plant but specifically from the transition range, including both safe and unsafe plant
states. A suitable distribution of test inputs that meets these criteria is shown in Figure 4.2. The
ordinate in this figure is the probability of the abscissa value being a test input. The parameter
types and ranges for choice of random input data can be found in NUREG 1272 "Analysis and
Evaluation of Operational Data" [29]. Tailoring the parameters to known plant failure states
greatly increases the usefulness of random test for Class lE software.

Appendix E of IEC Publication 880 provides the following formulas for computing the
number of random test cases (n) that have to be executed without failure for statistical confidence
c that the failure probability is no greater than P.

P 2.99 for c = 0.95
n

P 5 4.6 for c = 0.99
n

As an example, 30,000 random test cases without failure are required for 0.95 confidence that
P < 10-4.

I! \

Shutdown

Operation

Transition Input
Data Profile

Figure 4.2: Input Profiles for Safety Systems

64

4.3 Management Considerations for Class 1E Software Test

Under this heading the following topics will be discussed:

Qualifications of test personnel

Applicable standards

Test tools and support software

4.3.1 Qualifications of Test Personnel

It is generally desired that test personnel are (a) unbiased, (b) knowledgeable in the procedural
aspects of test and test documentation, and (c) familiar with the product and the application
environment and knowledgeable about the sources of errors that have been encountered in the
past. The establishment of qualifications in each of these areas is discussed below. It is noted
that requirements under (a) and (c) may sometimes conflict in that personnel familiar with the
product and the application are likely to have some bias (usually in favor of the product under
test). This difficulty is discussed at the end of the following subsection.

The discussion in this section is very deliberately restricted to personnel qualification as
contrasted with certification or any other mechanism that establishes a defined class of authorized
individuals for the test activity. The reasons for avoiding the latter approach are that (a) there
was very little support for it among the organizations contacted in the survey (not restricted to
the Class 1E system vendors), (b) there is at present no competent body to establish certification
criteria or to administer the certification process, and (c) to the authors' knowledge there is no
precedent in the United States for mandatory certification of software test personnel (individual
organizations may have an internal certification procedure).

4.3.1.1 Freedom from Bias

Freedom from bias is required for those test activities that are part of .the formal evaluation of
safety systems and their software, and this usually includes all tests after unit testing. Practically
every guidance document for software test, quality assurance or verification recognizes the
desirability of organizational independence of the test function from the development function.
This can take the form of merely identifying the degree of independence, as in IEEE Standard
for Software Quality Assurance (SQA) Plans [r] which requires:

65

Organizational dependence or independence of the elements responsible for SQA from
those responsible for software development and use shall be clearly described and
depicted.

A stronger position is taken in the Quality Assurance Requirements of Computer Software
for Nuclear Facilities [d]:

Software verification and validation activities shall be performed by individuals other than
those who designed the software.

The above citation and most of the following ones refer to verification and validation, and
these activities are here interpreted as including the formal test phases. Where independent
verification is conducted separate from the formal tests a relaxation of the requirements derived
here may be appropriate.

The IEEE-ANS Standard 7.4.3.2 [b] is even more specific by stating:

The verification group shall be organized to be independent of those responsible
for the system design.

The latter formulation is consistent with the guidance in IEC Publication 880 [u] which
states that the management of the verification team shall be independent of that of design, with
a further explanation of this requirement by the following note:

The requirements for an independent group implies verification either by an
individual or an organization which is separate from the individual or organization
developing the software. The most appropriate way is to engage a verification
team.

The British Ministry of Defence Standard 00-55 [w] applies to procurements by
government agencies and raises very stringent requirements for independence of the Safety
Auditor (equivalent to the V&V function for safety critical software):

The Design Authority shall appoint one or more named individuals to act as
Independent Safety Auditor from the outset of a project. A separate contract shall
be placed to cover the activities of the Independent Safety Auditor.

66

The guidance for this requirement states:

The technical and managerial independence of the Independent Safety Auditor
from the Design Authority can best be achieved by using an independent
company, but an independent division of the prime contractor may be acceptable
if adequate technical and managerial independence can be shown at the Director
or Board level.

The central requirement underlying most of these formulations is that the funding for the
test activities that are part of the V&V process shall not be controlled by the design team. In
the survey of safety system vendors that was conducted as part of this effort most companies
emphasized that adequate expertise for conducting a comprehensive test required familiarity with
the product that could only be found in their organizations. This contradicts the requirement that
safety systems and their software be documented in sufficient detail to permit trained individuals
outside the vendor organization to evaluate the suitability of the equipment, plan the installation
and licensing, and maintain the systems after their installation. Use of an independent
organization to conduct or monitor formal test not only avoids the possibility of biased evaluation
but also facilitates uniform treatment of the products of multiple vendors. It should therefore be
the preferred approach for Class lE software.

4.3.1.2 Procedural Qualifications

For tests to produce valid results it is necessary to adhere strictly to procedures which are usually
only partially defined in the test procedure document. Therefore personnel responsible for the
testing of Class 1E software must be trained in the general procedures that govern all testing of
critical software as well as in the specific ones that may be imposed by the local management.

Typical of general procedures is the need to keep the software under test, the test
environment and the test cases under configuration control. An example of a local procedure is
the logging of routine test events, such as the start and finish times of a test segment (logging
of non-routine events may be more accurately described as a general requirement).

Under benign circumstances failure to adhere to these procedures will require the
repetition of a series of test runs, but in other cases it can invalidate a major test segment.
Because of the potential cost and schedule penalties that arise when correct procedures are not
followed in the testing of critical software most organizations have training programs in this area.
Possibly because of the obvious self-interest of companies in the procedural qualifications of their
personnel this aspect has received little attention in the standards and guidance literature.
However, adequate familiarity with all procedures affecting the test process is also required for

67

non-company personnel who may participate in or monitor the test, and for these dependence on
self-motivation on the part of the company conducting the test may not be sufficient.

As a minimum, it should therefore be required that general and locally mandated
procedures applicable to the conduct of the test be documented and that this documentation be
made available to any non-company personnel who participate in or monitor the test. Where
formal training in test procedures is provided, this program shall also be open to such
non-company personnel.

4.3.1.3 Familiarity with the Product and Application

Familiarity with the product and its application is necessary to interpret and implement test plans
and specifications, to assess test results, and to take appropriate action when unforeseen
conditions arise during the test. These facts are frequently cited to defend significant participation
in test by personnel who developed the software to be tested. As already discussed, the test
article should be documented in sufficient detail to permit generally qualified technical personnel
(with education and experience equivalent to that of the developers) to conduct or monitor the
test, and this negates the need for assigning specific test responsibilities to development personnel
(it is not intended to restrict them from supporting test). In this connection a provision of the
IEEE-ANS Standard 7.4.3.2 [b] is particularly significant:

The technical qualifications of the verification team shall be comparable to those
of the design team.

Taken together with the following requirement for documentation of verification
(including test) established in IEC Publication 880 [u], there is a consistent basis for a technically
competent independent test or test monitoring organization:

The level of detail shall be such that an independent group can execute the
verification plan and reach an objective judgement on whether or not the software
meets its performance requirements.

It is expected that test staff is familiar with the nature of software faults and has access
to the records of failures encountered during development.

68

55

4.3.2 Applicable Standards

4.3.2.1 The Role of Standards for Test Methodology

The term standard is here interpreted broadly to include documents issued by standards making
organizations that may or may not be formally designated as standards. Consideration of
standards is important in developing guidelines for testing of Class IE software and systems for
at least the following reasons:

" Standards (established or newly created) provide a common understanding of the test
objectives'and requirements among the interested parties.

" The use of established standards reduces the cost and schedule for software and system
development because of the experience in prior application of methodologies that satisfy
the standards.

" Adherence to standards permits conforming products to be widely applied, thus providing
motivation for the supplier to invest resources for the development of a superior product;
this consideration is particularly important for safety systems that conform to international
standards. Standards facilitate interchangeability of competing products, thus providing
benefits of potential price or performance competition for the user.

From the large universe of standards that pertain to software and systems test it was
necessary to select a small number for discussion in the following sections. The selection was
governed by the following considerations:

1. The standard has potential as a reference document for regulatory guidelines

2. While not meeting the criteria for (1) the standard provides definitions or structure that
can be used in the formulation of regulatory guidelines

3. The standard is known to the safety systems community and may be used as a basis of

comparison with those included under (1) or (2).

Individual standards are grouped below by originating agency. In the discussion of the
standards the rationale for assigning it to one of the above three classifications is mentioned.

69

4.3.2.2 U. S. Military Standards

MIL-STD-882B + Notice 1 [o] System Safety Program Requirements, Mar 1984

The standard contains no specific guidance for test methodology. Definitions and hazard
classifications are duplicated in more applicable documents. Designated as (3)

MIL-STD-1521B [h] Technical Reviews and Audits for Systems, Equipments, and Computer
Software, Jun 1985

Associates delivery of test documents (test plans, specifications, procedures and reports)
with project milestones (reviews and audits). Milestones are based on waterfall model
and need to be interpreted for the nuclear safety systems environment. Designated as (2)

MIL-STD-2167A [e] Defense System Software Development, Feb 1988

This standard is aimed at software for mission-critical computers in an environment where
software is developed by a contractor for use by military. While not addressing specific
test methodologies or test termination criteria, par. 4.3 provides useful guidance for the
test environment, organizational independence of test activities, and traceability between
requirements and test cases. Designated as (2).

4.3.2.3 Other U. S. Government Standards

NIST SP 500-180 [q] Guide to Software Acceptance, Apr 1990

Section 5 of this document deals with Software Acceptance Testing. It contains no
guidance on specific methodologies or test termination criteria but has good checklists for
the buyer's (or regulator's) activities and responsibilities in acceptance testing.
Designated as (2).

4.3.2.4 Non-Governmental Standards

ANSUIEEE Std 730-1981 [r] IEEE Standard for Software Quality Assurance Plans

Contains only very general requirements for test, embedded in a verification and
validation plan and report (Section 3.4.2.3 and .4). Designated as (3)

ANSI/IEEE-ANS-7.4.3.2-1982 [b] Application Criteria for Programmable Digital Computer
Systems in Safety Systems of Nuclear Power Generating Stations, Jul 1982

70

Section 7 (Verification) contains concise requirements for all verification activities with
additional specific requirements for test (see below). It deals with organizational
independence and technical qualifications of the verification personnel, and with the
documentation of all review and audit procedures. It requires the verification group to
provide a test plan that among other items specifies:

"• criteria for establishing test cases (par. 7.3.1)

"* expected results for each case (7.3.2)

"* requirements for testing all logic branches (7.3.3)

"• acceptance criteria (7.3.4)

"* error reporting and re-testing procedures (7.3.6)

The current standard (discussed above) is widely accepted in the nuclear industry; it is currently

undergoing revision with anticipated tightening of some requirements. Designated as (1)

IEEE Std 829-1983 U] IEEE Standard for Software Test Documentation

This standard is particularly strong in the definition of the software submitted to test, of
features to be tested or not tested, and in establishing criteria for acceptance of test
results, for suspending test, and for resumption of test after a suspension. Designated as
(2)

This guide is intended to supplement IEEE Std. 730 (see above). It requires identification
of staffing levels for each QA activity. Designated as (3)

IEEE P1008 [k] Standard for Software Unit Testing, Mar 1985.

Identifies three stages for test case generation:

"• Requirements based

"• Architecture based (algorithms and data structures)

"• Implementation based (code structure)

Designated as (2)

IEEE P1228 [m] Standard for Software Safety Plans, Jul 1991

71

The current draft contains only broad requirements for test. Designated as (3)

4.3.2.5 International Standards

IEC 880 [u] Software for Computers in the Safety Systems of Nuclear Power Stations, 1986

Test is covered under two separate clauses: for software (clause 6.2.3), and for the
integrated hardware/software system (clauses 7.5 through 8.1). In addition, Appendix E
contains pertinent tutorial material on verification methods. The requirements are stated
very broadly and the only unique feature is found in a discussion of computer system
validation (clause 8) where it is recommended that tests:

"* cover all signal ranges in a fully representative manner

"* cover voting and similar logic

"* include trip devices in their final configuration

"• verify response times and correctness of actions under all failure conditions.

Designated as (2)

IEC 987 (t] Programmed Digital Computers Important to Safety for Nuclear Power Stations,
1989

This standard is targeted at hardware. It refers to IEC 880 par. 7.5 for hardware/software
integration testing. Designated as (3).

4.3.2.6 Foreign Standards

MOD 00-55 [w] The Procurement of Safety Critical Software in Defense Equipment

Key test requirements, listed under par. 3.3 (Dynamic Testing) include statement and
branch coverage, and testing all loops for 0, 1, and many iterations. Use of a coverage
analyzer is specified (it is of course implicit in the coverage requirement). There are
stringent requirements for the independence of the test group, including keeping the test
cases hidden from the developers. Designated as (2).

MOD 00-56 [x] Hazard Analysis and Safety Classification of the Computer and Programmable
Electronic System Elements of Defense Equipment

72

As part of the preliminary hazards analysis target failure rates are established for each
function which can be propagated into test objectives. Designated as (3).

4.3.2.7 Evaluation of Test Standards

Many of the standards address the organizational aspects of software test: independence of the
test group and qualifications of test personnel. Comparatively few deal with the technical
requirements of test, and none go substantially beyond the complete branch testing specified in
ANSI-IEEE-ANS 7.4.3.2. There is thus no basis for preferring another existing standard to the
one currently in use in the U. S. nuclear industry.

Desirable provisions from other standards that should be adopted into 7.4.3.2 or else
separately imposed as regulatory guidance include:

"* use of algorithms and data structures as a source of test cases (IEEE 1008)

"* definition of test articles and scope of test (IEEE 829)

"* verification of response times (IEC 880)

"* traceability between requirements and test cases (MIL-STD-2167A)

In addition, MIL-STD-1521B provides valuable guidance for the scheduling of test
documentation, and NIST Special Publication 500-180 identifies the sponsor's or regulator's
responsibility during acceptance test. These issues are currently outside the scope of 7.4.3.2, and
therefore it may be expedient to treat them in the regulatory guidance document.

While path testing is not currently required in any standard, it is believed that selective
application of this methodology is highly desirable, because it provides systematic test coverage
for multiple rare conditions.

4.3.3 Software Test Tools

Automated assistance for testing is motivated by both technical and economical considerations.
Software test tools can (1) speed up the testing process, (2) reduce the amount of labor required,
(3) improve the thoroughness of testing, and (4) make the quality less dependent on skills of the
test staff. Automated tools make it possible to achieve a level of thoroughness in the testing
process that would be difficult, if not impossible, to accomplish manually. The fourth benefit
is of interest to regulatory agencies because personnel qualification criteria are difficult to

73

implement and enforce. An additional advantage of tool based software testing from the point
of view of a regulatory body is that the documentation will be more uniform than that manually
generated and thus more easily reviewed. To achieve these benefits the tools must be dependable
and accurate. For use in the Class IE environment it is desirable to concentrate on tools that
have been in use for several years and for which good vendor support is available. In general,
test tools are less apt to give rise to serious or common mode failures than do development tools,
such as compilers.

Against these arguments for tool usage must be weighed the cost of the tools, additional
training, and potential requirements for changing the established development and testing
processes. For this reason there is frequently resistance to the use of tools or tool abandonment
when initial expectations are not met, either due to limitations of the tool or due to inadequate
training.

For Class lE software the benefits from use of tools during testing are expected to
outweigh the disadvantages, particularly in the long run.

Test Tools can be categorized according to their functions:

1. Tools supporting complexity measurement

2. Tools supporting syntax and semantics analysis

3. Tools supporting test coverage analysis

4. Tools supporting regression testing

5. Tools supporting test data generation

Some of these categories, such as test coverage analysis, complexity measurement, and
syntax and semantics analysis, are quite mature and recommended to be used by Class IE
software vendors. Although the capability of the regression testing tools are limited, they should
also be used whenever applicable. Test data selection tools are still in the research stage.
Commercially available test case generators are very limited in their capabilities. They can be
used for creating some test data if under favorable circumstance.

The Section A.2 describes each of these categories and summarizes the available tools and
their capabilities.

74

4.4 Criteria for Review of Class 1E Software Test Programs

The objective of this section is to provide criteria for the evaluation of test programs for Class
1E software. The professional literature and current standards summarized in earlier sections
provide valuable background but do not directly lead to such criteria because they lack detail or
address only a portion of the concerns. The selected approach is therefore to list major topics
for the evaluation of test programs, to describe the key issues under each topic, and to identify
information that will show whether the issues have been adequately addressed.

The major topics covered in this section are:

1. Definition of the application and its environment

2. Testing in the system and software development cycle

3. Management and organization of test activities

4. Applicable test and documentation standards

5. Test methodology and test termination criteria

6. Test environment and test tools

7. Documentation and review of test results

The discussion assumes that the software under test is new and that the test program is
being evaluated at the start of the software development with periodic reviews duiing the
development phase. Usually the information required for the last three topics will only be
available after major design milestones.

4.4.1 Definition of the Application and its Environment

The key issue is to determine whether there are adequate requirements for deriving a top level
test program. The application should be defined by a systems requirements document as well
as by a software requirements specification. The systems level document is needed for evaluation
of the systems test planning and the software document is needed for evaluation of the
acceptance test planning.

75

In order to support test the systems requirements must identify at least the following:

* Required functions in each mode of operation

* Criticality assignment for required functions

* Prohibited actions or outputs

* Safe states (when required functions are not operative)

It is highly desirable that the systems requirements or a separate hazards analysis identify
the maximum allowable failure rates (or probability of failure on demand) for critical functions.

At least the following must be known about the environment of the application:

"* Computer types, redundancy provisions, and primary power supplies

"* Human-machine interfaces (information displayed to operators and modes of

operator intervention)

"* Communications architecture (inter-processor and processor to plant)

"• Networking facilities

"* Operating system(s)

"* Hardware and software maintenance facilities and policies

Where the systems test is to be conducted at other than the target installation the above
information is required for both the test site and the target site.

At least the following information for planning the acceptance test must be available from
the software requirements specification or associated documents:

"* Hierarchical description of functions served by the program with ranking of their

criticality

"* Definition of all variables (range, units, format, accuracy, time dependencies)

"* Description of the relations between the variables

76

"* Throughput requirements (average, normal and peak maximum, duration

associated with the maxima)

"* Other requirements and constraints (e. g., security, fault tolerance)

"• Language and development environment

"* Identification of any formal methods that are required or may be used in
development

Where the system documents define maximum allowable failure rates or failure
probability on demand, the propagation of these requirements to the software must also be
available.

4.4.2 Testing in the System and Software Development Cycle

The key issues under this heading are the realism of test planning and the adequacy of the
resources that will be available for the test program. The schedule of test activities must be
known in at least the following detail:

"• Listing of all software and system tests with classification of test activities as

informal/formal

"* Identification of location and responsible organization for each formal test

"* Prerequisite documentation for each formal test and expected availability (includes
documentation from non-test activities)

"* Hardware and software environment for each formal test and expected availability
(including documentation)

"• Required training of test personnel (schedule, equipment and software to be used,
documentation requirements)

"• Schedule of formal and informal tests and their relation to project milestones

"* Resource estimates (at least in total staff-months)

4.4.3 Management and Organization of Test Activities

77

The key issues under this heading are the level of management attention to test, the independence
of the test organization from the developer, and the qualifications of test personnel. At least the
following information is required for each formal test:

"* Designation of individual(s) authorized to start, interrupt, and terminate a test program
(e.g., integration, acceptance, etc.), a test sequence, and an individual test run.

"* Designation of individual(s) authorized to accept and reject results for the test program,
test sequence and individual tests.

" Designation of individual(s) who are custodians of the software under test, the support
software, test tools, test cases, test data (results and intermediate) and of the hardware
environment. A custodian is the lowest management level that can authorize a change in
the configuration of an item.

" Designation of individual(s) responsible for the overall test budget, the budget for
individual test programs, for establishing staffing levels, and for hiring/firing of any
previously designated personnel.

" Organization charts showing the relationships between the individuals designated above
and between the test and development organizations.

" Minimum educational and experience requirements for all test staff positions and for all
equivalent development staff positions.

" Actual educational and experience qualifications of the designated individuals authorized
to accept and reject test results (at any level) and for individuals who approve design at
the equivalent level.

4.4.4 Applicable Test and Documentation Standards

The key issues under this heading are that applicable standards are known and are followed.
Standards may be applicable because they are (a) invoked in the statement of work or in the
specification, (b) derived from invoked standards or specifications, or (c) selected by the
developer. In some cases standards are tailored, or only designated portions of a standard are
invoked.

At least the following information is required to evaluate whether the test organization
is likely to comply with applicable standards:

78

"* List of applicable standards for the conduct of test, where they are invoked, and prior
experience with these standards

"* List of applicable standards for the article(s) under test, where they are invoked, and prior
experience with these standards.

"* List of applicable standards for test documentation, where they are invoked, and prior
experience with these standards

In all cases the term "standard" is meant to include specifications. The listings should
indicate whether standards are to be applied in a tailored or restricted manner.

"* Means by which compliance with the standard is checked (a) within the organization
responsible for furnishing the product or service, and (b) by the quality assurance
function.

"* Approved, pending and anticipated requests for waivers of standards.

The authors regard par. 7 of IEEE-ANS Standard 7.4.3.2 [26] as a minimally acceptable
basis for test, and Appendix C of the Ontario Hydro standard [271 as offering a considerably
more comprehensive approach. The approach and overall structure of tests discussed in Section
2 of the present document can be used with both of these standards.

4.4.5 Test Methodology and Test Termination Criteria

The key issues are that the test methodology and termination criteria are consistent with the
applicable standard(s) and can be supported by the test environment (see next section).

The evaluation should consider at least the following:

"* Selection of a methodology that is documented and for which adequate training can be
provided. It is desirable that there be prior experience with the methodology.

"° Consistency of the methodology with the applicable standard(s) and other test
requirements (schedule, reporting, etc.)

"* Selection of test termination criteria consistent with the applicable standard(s), the
available resources, particularly personnel and computer time, and the test environment.

79

"* Provisions for random testing in the transition region between safe and unsafe operation
where such testing is not already a part of the test termination criteria.

"* Availability of test tools to support the required or selected test termination criteria.

The concerns with resource and schedule limitations can be satisfied by means of
personnel, computer, and tool loading charts which allow adequate margins for faults in the
initially submitted software and for errors in the implementation of the test methodology.

4.4.6 Test Environment and Test Tools

The key issues under this heading are that the test environment and tools are stable, that they are
compatible with the software or system under test and the selected methodology, and that they
support the efficient collection and analysis of test results. Because of significant progress in the
test environment and tools areas there is an inherent conflict between stability and efficiency
since a tool that has been in use for a number of years is not likely to be efficient by current
standards. While some compromises will have to be made, it is desirable to avoid tools just
emerging from research because they are likely to require frequent modification during test which
may invalidate previously captured results. It is also undesirable to accept an environment as
stable if it requires many manual operations that can be automated by established techniques
because the need for the introduction of automation will very likely become apparent during test
and may cause disruption of the test process. In general, testing conducted with automated data
input and output is more easily analyzed and produces more consistent final results than testing
mainly dependent on manual intervention.

At least the following capabilities should be evaluated to determine that the test
environment and tools can support an effective test program:

" Availability of full documentation for the test hardware and the test support software
(should be available at least three months prior to the due date for the earliest test
document).

"* Availability of vendor support for hardware and support software (should be on-site or
on-line).

"* Familiarity of test operations personnel with the hardware and support software.

"* Availability of efficient support software for transforming the source program into
machine readable code. Consider that this process will have to be repeated every time

80

the code is changed to correct faults, to improve the operational characteristics of the
software, or to accommodate instrumentation provisions of the test tools.

"* Compatibility of the process of generating test cases with the configuration control
mechanisms for identification and archiving of test cases.

" Compatibility of tool features with the requirements of the applicable test standard and
the selected methodology (e. g., a tool designed to measure branch coverage is not
suitable where condition coverage is required)

"* Availability of detailed diagrams for test data flow during preparation of a test sequence
(analysis of source code and instrumentation), during test execution, and for later analysis
of test results.

4.4.7 Documentation and Review of Test Results

The major issue under this heading is that documentation must show compliance with
requirements, both in the execution of the tests and in the interpretation of test results. A lesser
but very frequently encountered issue is inconsistency between the format of the most detailed
data and that at successively higher levels of summarization. This arises because reporting of
test results is essentially a top-down process, in that the report starts with the overall conclusions
(the unit under test meets or does not meet the test criteria) and then substantiates these
conclusions at more detailed levels while the data collection results proceeds in the opposite
direction, bottom-up. Very detailed planning of data collection is required to overcome this
difficulty.

All test documentation should demonstrate at least the following capabilities or attributes:

"• Presence of concisely formulated test objectives with reference to governing requirements
for the execution of the test and for the software characteristics to be demonstrated.

"* Substantiated compliance with the requirements for the document, and, where applicable,
for the performance of the test or of associated tasks.

" Description of features selected by the test organization that were not governed by the
requirements, e. g., a specific methodology or tool, in sufficient detail to let a reviewer
judge their suitability.

" Identification of the individuals and job titles responsible for data collection, data analysis,
and report preparation to enable the reviewer to judge compliance with requirements for
personnel qualifications.

81

Preparatory documentation (test plans, specifications and procedures) should demonstrate
at least the following:

" Recognition of resource constraints and ability to perform the required tests within these
(e. g., by indicating the number of personnel at each skill level that will be required,
computer time, etc.)

"* Detailed planning for data collection and analysis to provide data in the format required
in the test report.

During the conduct of a test some discrepancies will usually be encountered. Not all of
these are due to faults in the test article; frequently problems with the test environment or the test
procedure are responsible. A creditable test report will clearly des,-ribe the discrepancies,
indicate how they were resolved, and whether they invalidated any part of the test results
obtained prior to their resolution.

Considerations in the evaluation of a test report therefore include:

"* Clear recommendations for the acceptance, conditional acceptance, or rejection of the test
article with reasons for the recommendations and references to test data that support the
reasons.

"* Descriptions of discrepancies, whether due to the test article or other cirmum--twnces,
actions taken to resolve them, and their effect on the test.

"* Where there is not an unconditional recommendation for acceptance, the required remedial
actions should be identified.

In the review of the test report the key issue is to determine whether the required
capabilities for the article under test have been conclusively demonstrated. The reviewer must
be convinced that

"* The requirements for the test article have been correctly interpreted by the test
organization

"• The test was conducted under appropriate conditions (in the environment and with the
tools specified in the preparatory documents) and by qualified personnel

82

* The test results are complete, were correctly evaluated against expected results, and were

correctly interpreted against the requirements.

4.5 Conclusions and Recommendations

The background material presented in Sections 4.2 and 4.3 has been used to generate guidance
for the review of Class 1E software test programs in Section 4.4. The present discussion
addresses broader issues that affect test programs for Class 1E software.

The most important limitation encountered in the conduct of test programs for critical
software is that testing cannot be exhaustive. The difficulty represented by this limitation
increases sharply with program size because the number of possible interactions is an exponential
function of size, and the resources available for test can usually not be raised much more than
in linear relation with size.

Possible resolutions of this problem are (a) to place restrictions on the size of programs,
(b) to accept testing of limited scope and (c) to require a major expansion of the resources
allocated to test as programs get larger. The latter is considered a measure of last resort, and
only alternatives (a) and (b) will be discussed in detail.

Where the objective is the direct replacement of an analog function with a digital
implementation the software requirements are indeed very modest and complete adherence to
some acceptable test termination criteria is possible. This approach precludes significant
improvements in plant safety and efficiency that are made possible by the application of digital
computers. An example of such an improvement is that the set point for a trip meter that in the
analog version requires periodic reset by an operator can be made a dynamically computed
function of plant state in the digital version. Safety is improved because the resetting is not
longer dependent of operator attention, and efficiency is improved because the dynamically
computed set point allows the plant to be operated at higher power levels. Therefore alternative
(a), restricting the size of the software, carries with it a cost of lost opportunities.

Using the same example to investigate alternative (b), relaxation of the test termination
criteria, it is required to trade off the safety impairment (if any) due to this relaxation against the
safety improvement clue to reduced dependence on operator intervention. The present state of
knowledge provides little useful quantitative data for such a trade study but at least points in a
potentially fruitful direction: if the program for the trip meter proper can be well isolated from
the setpoint calculation, and if the interface between the two functions can be adequately verified,
then a linear relation between program size and test resource requirements can be substituted for
the previously postulated exponential one. Keeping individual software functions well isolated
in design and implementation is also referred to as "loose coupling" and has other desirable
properties. Object oriented design and programming provide loose coupling, and the full
implications of this for test of critical software needs to be studied.

83

A complementary approach that will benefit any test program but particularly those for
large critical programs is to target the testing at specific software failure modes that can produce
hazards. To this end it is necessary to identify

"• the software outputs or system level functions where hazards can occur

"• the fault types that can produce hazards.

The first requirement can be met through established system safety procedures, such as
fault tree analysis or hazardous operations analysis. The second one needs more research, but
as mentioned in the body of this report, faulty processing under multiple rare conditions usually
escapes detection by conventional test methodologies and is thus a prime suspect for producing
hazards. Path testing is a known systematic approach for covering multiple conditions, but
because of the potential for requiring an excessive number of test cases it must be used sparingly.
Under the specifically targeted conditions advocated here it is both feasible and effective. Further
research into this field, which may deserve the title "Testing smarter instead of testing more",
is highly recommended. Among the objectives should be the collection and dissemination of data
on Class 1E software failures during test, particularly in the later stages, and analysis of these
data to identify improvements in both development and test methodologies.

The inherent limitations of test must be recognized, but improvements in development and
test methodology hold the promise of containing or shrinking the domain of hazards not likely
to be detected by test. Research is recommended in

"• The benefits of object oriented design and programming on testability of Class IE
software, and

"° Targeted testing for functions and fault types likely to cause hazards.

84

Chapter 5

Fault Tolerance and Fault Avoidance

5.1 Introduction

5.1.1 Motivation

Fault tolerInce and fault avoidance are techniques for reducing the likelihood that a fault will
cause a disruption of an importalit service. The aim of fault avoidance is to prevent or reduce
the occurrence of faults, while fault tolerance is directed at dealing with the effects of faults
before they become manifest at the system level. The need for fault tolerance for hardware for
Class IE systems is not challenged because the development of faults in hardware, particularly
in electronics, is considered as inevitable. Because software is not subject to physical
deterioration the need for fault tolerance in this field is not quite as obvious. Is not software
development an inherently logical process that, if carried out correctly, should yield a fault-free
product? Our findings are that some programs exist in which no faults have been found but that
it is impossible to define techniques that give high assurance that a future program will fall into
that group. The premise of this chapter is that the need for software fault tolerance arises from
the inability to distinguish between programs that are initially free of faults and those that are
not, rather than from the need to protect against deterioration of an initialiy fault-free component
(as in hardware).

5.1.2 Structure of this Chapter

Section 5.2 discusses the nature of software failures and provides a basis for understanding fault
tolerance as well as fault avoidance. This is followed by individual sections on fault tolerance
and fault avoidance. The final section presents conclusions and recommendations for further
research.

85

5.2 The Nature of Software Failures

5.2.1 The Failure Process

The cause of a software failure is a fault in the program, and the effect of the failure is an error,
a deviation of the service furnished by the program from the desired service. The failure is an
event in the computer when the content of a register transitions to an incorrect value (the value
that results in the error). Programs developed by a responsible organization will not produce
errors during most executions since they have undergone extensive tests to detect and remove
faults responsible for such errors. Therefore the failure is usually due to the presence of an
unusual circumstance (data value or computer state) which is called the trigger. The relationship
between these concepts is shown in Figure 5.1.

TRIGGER

AULT FAILURE > ERROR

COM1PUIER

OBSERVED

Figure 5.1: Failure Terminology

In a very simple case the fault may be the lack of a divide-by-zero protection, the trigger
the occurrence of a zero divisor, the failure is the event of overflow of a register, and the error
is the overflow interrupt. In a sophisticated digital system the occurrence of an overflow
condition may invoke an exception handler that prevents the propagation of the overflow error
and thus avoids or mitigates the failure from appearing at the system level. The need to study
the nature of failures at several levels has long been recognized [28]. For software failures at
least three levels can usually be identified:

* the logic level, where the error is typically manifest as an incorrect binary value

86

"• the information level, where the error is typically the incorrect value of a variable

"* the system level, where the error is typically an undesired action (display, positioning an
actuator, printing a message, etc.)

The relation between these is shown in Figure 5.2. No triggers are shown for the
information and system levels but these are possible, typically causing disablement of protective
measures. In this particular example the existence of faulty data was recognized at the
information level (e.g., by violation of embedded assertions) and that caused rejection of the
message. Conceivably a further condition could arise to defeat the intent of the assertions, and
that condition would then constitute a trigger at the information level. If the anomaly had not
been detected at the information level the "lost message" error at the system level could have
been transformed into a considerably more severe event. Practically all documented severe
malfunctions in critical systems involve multiple triggers and the deliberate disablement of some
protective measures.

BUFFERS
FULL

S~PROGRAM

' ALTRED|ENCOUNTERS

NO BUFFERS LOGIC MEMORY 0NFORMAT10N FAULTY DATA
FULL LVLLVLSSE EE

EXCEPTION

PROGRAM I

DETECTS LOST

ANOMALY MESSAGE

Figure 5.2: Failure Manifestations at Several Levels

The representation of failures in Figures 5.1 and 5.2 shows that the failure probability is
a function of:

"* the arrival rate of trigger conditions (at all levels)

"• the fault content of the software

"• the extent and robustness of protective measures at the information and system levels.

87

The first of these variables is outside the scope of software development and test. Very
high quality practices can minimize the number of conditions that act as triggers but they cannot
reduce it to zero. It is here assumed that fault tolerance will be required even where
sophisticated fault avoidance is practiced.

The importance of trigger conditions in determining the failure probability also motivates
continuous study of anomalies in plant operations and computer performance in this environment
in order to arrive at a creditable failure prediction model. The view of failures as being a
function of both fault content and trigger rates is needed not only for establishing whether a
given installation complies with safety criteria but also for quantitative assessment of operational
practices. These operational practices can improve or detract from the baseline reliability of a
Class IE system.

5.2.2 Severity of Failures

Fault tolerance is a costly provision, and therefore it should be employed only to protect against
faults that can cause severe failures. In the following, several approaches to severity
classifications are discussed.

The commonly used severity classifications in the aerospace and defense environment are
based on system effects. Examples include:

1. From MIL-STD-1629 (Failure Modes, Effects, and Criticality Analysis) [i]

Category I Catastrophic --- May cause death or major economic loss

Category II Critical --- Severe injury, major property damage

Category III Marginal --- Minor injury, minor property damage

Category IV Minor --- Not serious enough to cause injury or property damage

2. From British Ministry of Defense Standard 00-56 (Safety Classification of Computers and
PES) [x]

Catastrophic --- Multiple deaths

Critical --- Single death or multiple severe injuries

Marginal --- Single severe injury or occupational illness (or multiple minor
ones)

88

Negligible --- At most a single minor injury

Although the specific categories are not aligned, the standards use essentially the same
criteria, based on effects usually observable only in an extended system context and after the fact.
In MIL-STD-1629 it is recognized that the lethality or the extent of injuries cannot usually be
determined a priori, and a method is suggested to translate lower level effects (e.g., complete or
partial outage of a computer, into the end effects by means of beta (03) factors which denote the
probability that a component level effect will cause a given severity category. In addition, alpha
(x) factors can be used to translate an effect below the component level into a component level
effect. An example is that a memory address error may cause an inappropriate result with 0.9
probability and computer shut-down with 0.1 probability. In principle this approach may be
suitable for severity assessment of Class 1E software and system failures but it will initially be
difficult to obtain creditable values for alpha and beta. With the adoption of conservative
assumptions about alpha and beta, and the establishment of a reporting system that updates these
assumptions, the severity classifications of MIL-STD-1629 offer a workable approach for the
Class IE environment.

There is an implied severity classification in IOCFR50 Appendix E (with reference to
NUREG-0654) consisting of the following plant conditions (from most to least severe):

• General Emergency

• Site Area Emergency

* Alert

* Unusual event subject to notification requirements

The criteria for invoking these states are tied to specific observation at the time of the
incident (radiation levels, containment pressure) and are therefore not suitable for classifications
of failures in protective systems. Another disadvantage is that the Emergency Plans are specific
to each site and may therefore be applicable only in the local environment. This precludes their
use for a generic severity classification.

An internal document generated by Ontario Hydro mentions four severity classes for
software safety:

"* Category 1 - Safety critical

"• Category 2 - Significant effect on safety

89

"* Category 3 - Some effect on safety

"* Category 4 - No effect on safety.

This classification, like that discussed immediately above, is based on the function of the
software (to which is associated a worst case effect) rather than on the effect directly. It is not
considered more suitable than the preceding ones because it is derived from an internal document
and has therefore received much less scrutiny than the accepted standards.

5.2.3 Frequency and Criticality Classifications

The need for fault tolerance is also a function of the (expected) frequency of failures. Thus, a
high severity fault with very little likelihood of occurrence will not necessarily require the same
degree of protection as an equal (or possibly even lower severity fault) with a high probability
of occurrence. Typical expected frequency classifications are: frequent, probable, occasional,
remote and unlikely (or improbable).

An example of criticality (or safety integrity) rankings from MoD Std. 00-56 is shown in
Table 5. 1.

Table 5.1: Criticality Ranking

Failure Probability Severity

t Catastrophic Critical Marginal Negligible

Frequent S4 S4 S3 S2

Probable S4 S3 S3 S2

Occasional S3 53 S2 S2

Remote S3 S2 52 S1

Improbable S2 S2 S 1 S1

The criticality assignment involves even more judgment than the severity classification
because a further assessment for expected frequency of occurrence is required.

90

On the other hand, the selection of fault tolerance provisions should not avoid
consideration of expected frequency of events that require fault tolerance, particularly where there
are creditable data on the occurrence of events such as NUREG-1272 [29). In the Class IE
environment it is not appropriate to neglect protecting against a variety of f-.. ; b. ause it has
never been observed. But it is not unreasonable to require higher coverage for events that have
been repeatedly observed than for those that have not. This approach is used to evaluate some
of the fault tolerant architectures in a later section.

5.2.4 Error Type Classification

The function of protective systems is typically to take a prescribed action when defined
conditions arise. The error in the operation of the protective system can be

"* Type 1 --- failure to act when the defined conditions have been met

"* Type 2 --- action when defined conditions have not been met.

While the primary emphasis in fault tolerance and fault avoidance is to prevent Type 1
errors there must also be safeguards against excessive frequency of Type 2 errors. In general,
the probability of a Type 2 error is directly proportional to the number of independent channels
that can by themselves initiate a protective function. Requiring agreement among two
independent channels before a function is initiated will usually contain Type 2 errors at an
acceptable level.

5.3 Fault Tolerance

5.3.1 Architectures for Fault Tolerance

Four architectures for fault tolerance are shown in Figure 5.3 in a specific implementation for
software fault tolerance. In all cases the simplest possible example of a technique is shown, and
in particular the capability of architectures b through d to use more than two versions of a
program or function has not been depicted. The order of presentation is from the generally least
effective (retry) to the generally most effective (functional redundancy). Repeating a previously
unsuccessful execution can overcome failures due to temporary causes, such as a full queue or
a busy communications link. Although the fault tolerance capability of the architecture shown
in part a of Figure 5.3 is thus limited, the technique is highly cost effective since it is so easy

91

Program Program Program

A A L B

Fail Test < Test Fail

Pass Pass

a. Retry b. Recovery Block

A B A B

activate on
low input

c. N-Version Programming d. Functional Redundancy

Figure 5.3: Fault Tolerance Architecture

92

to implement and copes with faults due to temporary exception conditions (such as a blocked
communications channel) against which other approaches are not always successful.

In the recovery block approach another program version (which could be functionally
redundant) is executcu after the first one fails. It can cope with a broader spectrum of causes
of failure than tiie retry but it requires the independent development of two versions and is
therefore much more costly. The test block (usually referred to as acceptance test) is common
to arckitectures a and b in Figure 5.3, and this identifies both as dynamic fault tolerance
techniques, i. e., those that require a decision to switch from normal execution to an alternate
path. The design and implementation of the acceptance test are critical features for the
effectiveness of dynamic redundancy. If the test does not detect an error in the execution of the
program the intended fault tolerance provisions will not become operational. This form of fault
tolerance should therefore be selected only where good criteria for an acceptance test are
available. Protective systems for nuclear power plants usually meet this condition because the
software models a physical process that is subject to laws of conservation (of mass, momentum.
etc.) and of continuity from which effective acceptance tests can be formulated.

The remaining two architectures represent static redundancy because there is no explicit
transfer of control after a failure of one of the processes. In the c part of Figure 5.3 two versions
of the program run simultaneously, the outputs are compared and under normal conditions they
yield identical results. The common result is used to control the safety provisions.
Disagreements can be resolved in one of several ways:

"• use the most conservative result (the one that activates safety provisions) immediately or
after a wait of a given number of cycles

"• run a diagnostic to determine if intermediate results are reasonable for both programs, and
accept the one that has the most reasonable values

"• request operator intervention in resolving the disagreement.

The problems associated with resolving a disagreement can be overcome if a third version
is provided, which then permits two-out-of-three voting. This configuration is frequently referred
to a triple modular redundancy (TMR) with voting and many publications consider it the
paramount form of N-Version programming.

The primary drawback of N-Version programming is that two or more independent but
compatible versions have to be generated and executed in parallel. These requirements are much
more difficult to meet than those for the recovery block, because there Program B is executed
only in case of failure of A, and therefore inefficiencies in execution or in its effect on plant
operations are only of minor consequence. In N-Version programming A and B are executed
every cycle; they must therefore be compatible in exactly agreeing on the results that are being

93

compared and in having reasonably similar execution times. These restrictions become even
more difficult to meet when a third version is added as in TMR.

The effectiveness of software redundancy (this includes the Recovery Block and
N-Version programming) depends on two or more versions of the program being independent so
that the possibility of correlated faults is negligible. This independence is very difficult to
achieve as several published studies have shown [30, 31, 32]. The major sources of correlated
faults are associated with the statement or interpretation of requirements and with the handling
of multiple rare conditions. Unfortunately these are also the areas that have given rise to most
software problems in recently analyzed programs. Thus software redundancy must be crafted
very carefully to provide fault tolerance exactly in the areas where fault tolerance is needed most.

N-Version programming, and particularly the TMR configuration, is difficult to implement
ý)n the l our-channel hardware redundancy that is employed in many current Class IE applications.
SUnless separate hardware units are provided for the comparison or voting, these functions have
to be performed on each one of the active computers. This involves multiple inter-computer
communications at each phase of the voting process (furnishing the values to be voted on, the
results of the vote, and the decision to proceed to the next program segment). Because
inter-processor communication runs at a much lower speed than the internal processor bus, it can
occupy an appreciable part of the execution time for each cycle. Further impairment of the
throughput is due to the delay in waiting for the last one of the independent versions to terminate.
There are also problems in allocating the different versions to the hardware channels, and in
handling the voting or comparison when a hardware channel is down for maintenance.

Functional redundancy ((d) in Figure 5.3) makes it inherently easier to achieve
independence than ;eliance on software redundancy. Functional redundancy is used here to
designate a specific implementation of the concept of functional diversity in which diverse plant
protection algorithms operate in parallel such that any one of the functions can activate a given
safety mechanism. The broader concept of functional diversity is also applicable to situations
where one set of measurements or algorithms is used for an automated system and another one
for a display. In the specific application to plant protection systems functional redundancy
requires hazard detection by two different physical measurements, such as pressure and
temperature, and establishing independent requirements for each measurement channel. The
requirements are then implemented in high integrity (but not redundant) software that executes
on redundant computers in configurations that are examined in detail in Appendix B in this
report. As shown in the figure the outputs of the two functions, non-detection of a hazard
through pressure and through temperature measurement, are fed to an AND gate such that
absence of a safe indication from either one will cause activation of the protective system. Other
output algorithms are possible, particularly delay of activation for a number of cycles while only
one of the functions indicates unsafe conditions.

The major hurdle in the implementation of functional redundancy is the identification of
independent measurements for the same hazard that can be expected to track over the entire
operating range. The operations available in digital processing makes the achievement of this

94

objective much easier than it is in the analog world. Once independent measurements are
identified, the attainment of independence of requirements, specifications, design and code is
much easier to verify than it is for the redundant software architectures. Thus, while the
implementation proper of functional redundancy may involve costs that are comparable with
those of the simplest form of N-Version programming ((c) in Figure 5.3), the overall cost,
including analysis and test associated with verification, is expected to be lower.

There is a further motive in pursuing functional redundancy for Class IE systems in a
general sense. A typical quantitative objective for failure on demand that is encountered in the
literature is 10.6. Demonstrating attainment of this objective by conventional statistical methods
(e.g., associated with a confidence level) is impossible. But if this 10-6 objective can be
partitioned into l03 objectives for each of two functionally redundant channels verification by
statistical methods may become feasible. It is not intended to overlook the difficulties in
verifying complete independence even under these conditions, or the paucity of precedents for
using statistical testing in evaluating the reliability of computer programs. But this approach
more than any other holds promise of establishing objective quantitative criteria that are
compatible with the tenets of probabilistic risk analysis that are followed in other areas of nuclear
safety.

5.3.2 Error Detection

Error detection is an essential part of dynamic fault tolerance techniques, and it can improve the
effectiveness of static fault tolerance approaches. Error detection is also referred to as
self-diagnostics. It is frequently implemented as an assertion embedded in the program, such as

if <diagnostic == true>
then continue
else invoke error handling

A brief discussion of the suitability of error detection techniques for use in Class 1E
systems is therefore presented here. The most prominent techniques are:

1. Replication checks.
2. Timing checks.
3. Reversal checks.
4. Coding checks.
5. Reasonableness checks.
6. Structural checks.
7. Computer diagnostic checks.

95

Each of these is discussed below.

" Replication checks consist of performing the same computation two or more times by

different means. They provide one of the most powerful and complete measures for

detecting errors not due to a common defect among the replications, but they are among

the most expensive in terms of the required resources and are therefore recommended
only where other techniques are not applicable.

" Timing checks are a common and limited form of replication checks. If the specification

of a component includes timing constraints on the provision of service then a timing

check can be provided in the system to determine whether the operation of the component
meets those constraints. If the constraints are not met then the timing check can raise a

"timeout" exception to indicate the error. Timing checks are easy to implement and are
effective.

" Reversal checks are applicable in systems where the relationship between inputs and

outputs is one-to-one. A reversal check takes the outputs from a system and calculates

what the inputs should have been in order to produce that output --- the calculated inputs

can then be compared with the actual inputs to check whether there is an error. An

example is to square the results of a square root function. Except in special cases like

this example, reversal checks have limited applicability and high resource requirements.

" Coding checks are based on deliberate but limited redundancy in the representation of an

object in a system, equivalent to the appended parity bits in arithmetic codes. Within the

object, redundant check data is maintained in some fixed relationship with the data

representing the value of the object. Errors which result from a corruption of either code

or data such that this relationship no longer holds can therefore be detected. Coding
checks are efficient but can be applied only in special situations.

" Reasonableness checks for acceptability usually are based on a knowledge of the process

served by the system. These checks will test whether the state of various objects in the

system is "reasonable," based on the intended usage and purpose of those objects as

envisaged by the system designer. A set of common checks for reasonableness are

illustrated in the Table 5.2 [33]. Reasonableness checks are widely applicable and
efficient.

" Structural checks can be applied to the data structures in a computing system. Checks

on structural integrity are aimed at inconsistencies in the data structures and are

particularly applicable to complex data structures in which a set of elements is linked
together by pointers.

96

0

to00

Cw

z C

f4 4

%. 4)

02 0 M

to c

Cd 00 0 u

>Cu - s.~

0 0

0o

<Cu

0 + 97

Computer diagnostic checks differ from other checks in that they are concerned
specifically with checking the behavior of the components from which the system is
constructed. A typical diagnostic check involves executing a program with a set of inputs
for which the correct output is known. Although primarily useful for detecting hardware
faults, this diagnostic is also useful for hardware/software interface problems.

5.3.3 Integration of Fault Tolerance Provisions

Large and complex fault-tolerant systems have experienced unanticipated, failure-inducing
interactions of individually well-designed components due to oversights in the integration [34].
Especially difficult to integrate are the various hierarchical fault diagnosis and recovery sequences
that support the localized fault tolerance of subsystems and programs that serve fault tolerance
of functions ("threads") that are provided by two or more subsystems.

A second major integration problem is presented by two or more nearly concurrent fault
manifestations. The large size and distributed nature of new systems lead to the possibility of
two or more independent fault manifestations occurring close in time, most likely because of the
previously undetected existence of dormant faults. This in turn will require two or more recovery
algorithms to be concurrently active, with the resulting risk of mutual interference, deadlocks,
and behavior that is very difficult to estimate.

The preferred way of avoiding those difficulties is to keep the program simple.
Distributed or concurrent computing is usually not required in Class lE systems, where it is
proposed the need should be investigated by an independent organization. Integration of
fault-tolerant systems requires incremental demonstrations of the capabilities, robustness,
completeness, and consistency of all fault tolerance functions, and validation requires operation
not for only single, but also for multiple overlapping fault conditions.

5.3.4 Evaluation

Fault tolerance capabilities can be arranged in the order of increasing possibility for common
software or computer system failure modes as shown:

1. Two or more functionally diverse programs, each running on separate hardware fault
tolerant computers.

2. Two or more functionally diverse programs running on the same group of hardware
redundant computers with highly robust system software (note 1)

98

3. Two or more software diverse programs running on separate hardware fault tolerant
computers

4. Two or more software diverse programs running on the same group of hardware fault
tolerant computers with highly robust system software

5. A single high integrity program (note 2) running on hardware fault tolerant computers

Note 1 Highly robust system software must be (a) simple, (b) incorporate at least time-out
and retry provisions, and (c) have test or operational history that verifies a failure
rate of less than a specified fraction per installation-year (suggested: 1 0-6). It must
provide at least the following functions (together with the computer on which it
is running): (i) round-robin dispatch of application programs, (ii) limit execution
of each application program to a preselected time, and (iii) restrict programs to
writing only into specifically assigned memory areas. The simplicity criterion
requires that functions beyond those listed be kept to a minimum. Multi-tasking
and multi-processing programs do not meet this requirement.

Note 2 A high integrity program is one that either (a) has been verified from specification
to code by formal methods, (b) incorporates self-diagnostics for all deviations
from expected data values or program transitions, or (c) uses the recovery block
(Part b of Figure 5.3) approach for software fault tolerance.

The requirements for fault tolerance will be primarily based on (a) the criticality of the
function being protected and (b) the existence of alternative means of furnishing the protection
function. These factors can be arranged as shown in the following table to select the minimum
acceptable fault tolerance capabilities. This table is presented to show the methodology; it is
expected that discussions with industry and reviews by the regulatory and standards community
will be required to establish generally acceptable criteria. The numerical table entries refer to
the fault tolerance classifications discussed above. The criticality of the protected function has
been expressed in general terms which may be roughly equated to readings of Table 5.3.

99

Table 5.3: Minimum Required Fault Tolerance Capability

Defense in Depth for the Criticality of Protected Function
Protection Function Highest H igh Medium Other

None 1 1 2 3

At least one other means 2 3 4 5
of protection available

Regardless of the merits of the fault tolerance provisions, software cannot be considered
acceptable for Class 1E applications unless it

"* implements validated requirements and a verified software specification derived from
these

"* was generated in a systematic manner, with verification of each development step against
the preceding one, and the developer can document adherence to these provisions

"* is coded in a standardized language that supports modem programming and test practices
and for which there exist adequate development and test tools

"" has undergone testing to verify that it meets requirements and does not cause undesired
actions (whether in conflict with expressed requirements or not).

Fault tolerance is intended to compensate for deficiencies, primarily in the specification
and design processes, that have not been proven to be preventable by current methodologies. It
should not be used as an excuse for any deviation from required practice at any stage of the
software development and test process. Development or test methodologies that go considerably
beyond the minimum requirements indicated above may qualify the software for a higher
capability designation. Examples are that the classification may be advanced to the next lower
number (except to capability 1) when at lest two of the following are met:

1. Statistical testing that shows a failure probability of less than 0.001 per installation year
at 95% confidence level

2. Path and special values testing of all segments that furnish the protection function

100

3. Formal verification from specification to code (inclusive), except where this has already
been used to qualify for class 5

4. Self-diagnostics for all deviations from expected data values and program structure
transitions, except where this has already been used to qualify for class 5.

In spite of the possibility of meeting most of the requirements with software diverse
programs it is believed that developers will prefer to investigate functional diversity because of
the application flexibility (the individual programs can be applied in various combinations and
the functionally diverse pair can be applied with few restrictions).

5.4 Fault Avoidance

Fault avoidance means ensuring that requirements, design and implementation faults are not
introduced during system development and construction. Fault avoidance can be achieved by
using careful structuring, a reduction of complexity and formal verification. Trusted components
refer to the components that are virtually failure-free in the operational context. A voting routine
in an n-modular-redundant (NMR) system is an example of such a component. Trusted
components in a fault tolerant system design may be particularly important in supporting the fault
tolerance.

The means of fault avoidance for safety systems can be divided into two categories that
are discussed in the following subsections:

1. Enforcement of good software engineering practice.

2. Use of formal methods.

5.4.1 Enforcement of Good Software Engineering Practice

Effective software engineering practice for fault avoidance includes:

"* Avoidance of complexity.

"* Use of certified software components.

101

"* Use of certified tools.

"* Use of configuration management.

"* Use of development standards.

Avoidance of complexity implies:

" Re-use of existing software components and standard systems originally developed by
effective software engineering practice, given that these meet current functional, quality
and safety standards.

"* Isolation of safety-critical functions, so that they are easier to implement, verify and
certify.

"• Avoidance of practices that may be desirable for non-Class 1E code such as dynamic
memory allocation and multi-level interrupts.

A certified component (object) must be well-documented, easy to use and the certification
should be to a sufficiently high standard. A certified tool is one that has been determined to be
of a particular quality. The certification of a tool will generally be carried out by an independent,
often national, body, against national or international standards. Tools are necessary to help
developers in the different phases of software development. Use of a certificated tool gives more
confidence in the results it produces. Ideally, the tools used in all development phases should
be subject to certification, but to date only compilers are regularly subject to certification
procedures.

Configuration management aims to ensure the consistency of groups of development
deliverables under the inevitable changes. Configuration management prevents the errors that
can arise from uncontrolled changes to deliverables. In essence, it requires the recording of the
production of every version of every deliverable and of every relationship between different
versions of the different deliverables. The resulting records allow the system developer to
determine the effect of a change of one deliverable on other deliverables. In particular, systems
or subsystems can be reliably modified or re-built from consistent sets of component versions.

Using standard approaches to the software development process enhances software quality.
A useful set of standards that covers all aspects of the software development project includes the
following areas:

* Project organization.

102

"• Project review and inspections.

"* Design methods.

"* Programming languages and support software.

"* Programming style guides.

"* Verification and validation methods.

"* Test methods a.... levels of testing.

"* Documentation standards.

"* Version control and configuration management.

Such standards ensure a consistent approach to the development. If the standards are
properly implemented, the approach should minimize faults by imposing good programming style
which should also ease subsequent software maintenance.

5.4.2 Formal Methods

5.4.2.1 Statement of the Problem

The system and software specifications for a digital plant protection system are key determinants
for its integrity and performance. Therefore regulatory documents for Class IE digital systems
must be concerned with the methodology used in the formulation of these specifications.

The use of Formal Methods (FM) for the formulation and verification of specifications
for digital systems and particularly for software has recently received wide attention in the
technical literature and is being mandated or given pronounced preference in the U. K. Ministry
of Defense Interim Standard 00-55 and in other proposed (draft) European standards. As yet
there are few industrial (contrasted with research and teaching) applications of FM in the U. S.
and none in the nuclear industry. Nuclear industry personnel interviewed so far are inexperienced
in FM and have indicated no interest in using this methodology.

103

5.4.2.2 Current Capabilities

Formal methods are presented as "mathematically based techniques for describing system
properties," and further "a method is formal if it has a sound mathematical basis, typically given
by a formal specification language" [35]. A more recent tutorial article defines formal methods
as "that branch of research in the foundations of computer science which deals with modeling
and reasoning about (properties of) sequential and distributed systems" [361. Difficulties arising
in applications of formal methods are that they have been misused [371. Besides the emphasis
placed on mathematical foundations and description of properties, emphasis also should be placed
on checking the application of a method. Well designed tools, based on the mathematical
foundations, are required to bring a formal method into practice. Moreover, there is a distinction
between mathematics and formalism. In particular, a formal method should:

1. include a clear statement about the intentions of an application of the method (abstract
system design, detailed system design, circuit design, procedural design, etc.) as well as
the intended method of checking the results (proofs, testing, reviews, etc.)

2. enable a clear and unambiguous statement of results (systems, hardware, software, etc.)

3. provide effective procedures for checking that the results meet the intentions.

The need of formal methods is not foundational but practical. First, formal methods
facilitate making clear and unambiguous statements about systems. Second they exist for the
representation of system designs on and manipulation by computer systems.

The following major criteria can be used as a guide to select methods:

"* style of presentation

"* scope of application

"* modularity

"• executability

"* graphical representability

The style of a specification language can be categorized as either model-oriented or
property-oriented [35]. Model-oriented specifications describe behavior in terms of some familiar

104

structure such as state machines, process or set theory. An advantage is that such models seem
to be natural for humans to understand. Property-oriented specifications describe behavior
directly in terms of the visible behavior at the interface to the system being specified. Ideally,
there is no internal system structure or model implied. An advantage is that ideally there is no
implementation bias; that is, the specifications do not give the software engineer any guidelines,
or implied constraints, about the internal structure of the system.

The scope of applicability of a specification language is determined by the extent to which
the basic concepts in the language directly support the basic concepts in the abstractions being
specified. We may also think that the scope of applicability is that range of applications for
which intuitive descriptions are most easily produced relative to other languages.

A successful specification method should have the property that component systems can
be specified and reasoned about. The component specifications should then be composable to
form a specification for a composite system. It should be possible to reason about the composite
system using the properties of the components without repeating the derivations for the properties
in the context of the larger system. This is called modularity.

Executability of specifications (animation) is useful to test them for reasonable and
expected behavior, and to assist in understanding them so that they can be modified and refined
as understanding is gained.

The ability to represent a specification graphically can assist in understanding.
Model-oriented specifications are generally easier to present and understand because graphical
representations are available or possible for many of them.

5.4.2.3 Recommended Regulatory Guidance

In view of the capabilities of current FM and anticipated near term advances, FM shall be
identified as a desirable technique for the creation of software specifications for Class 1E
Systems. The lack of experience and possible reluctance of industry personnel to use FM
immediately suggest that alternative methods shall also be accepted for demonstrating that:

"• all possible states for each variable in the specification have been addressed

"* all possible sequences of events yield the correct response

"* all required actions are permissible for the objects and states that may be encountered

"° no defined unintended actions will occur.

105

These demonstrations are not intended to replace other requirements for insuring the

integrity of software design and implementation.

5.4.2.4 Discussion

The increasing interest in FM could be seen in September 1990 when simultaneous special issues
of IEEE Computer, Software and Transactions on Software Engineering were devoted to FM
topics. In addition, the March 1991 issue of the Transactions on Software Engineering has a
special section on Requirements Engineering which focuses on FM. Two instances are known
in which FM (in a broad interpretation of that term) have been used on nuclear plant protection
software in Europe and in Canada [38], [391, [40] with generally beneficial results. It is thus
appropriate to ask what role, if any, FM can play in regulatory guidance for Class 1E digital
systems in this country.

While FM can be applied at most phases of the software development process the main
emphasis in the current literature is on formal specifications. Design and programming languages
furnish a formal approach to those development phases already. Motivation for formal
specifications arises from a number of factors of which the most prominent ones are:

1. Faults introduced into the specification are very difficult to find in test and are costly to
correct. They tend to persist until much later phases, frequently into operations. FM and
the associated manual or, better yet, automated proof of correctness may eliminate most
of these faults.

2. At least partially automated methods exist for verifying design against requirements and
code against design [41]. Sometimes these uncover inconsistencies in the specification
but very seldom do they identify missing or inappropriate requirements. It is hoped that
FM will be effective in filling this void.

3. A formal specification promises to be a good starting point for automated design and code
generation.

Against these factors that motivate the use of FM must be weighed a number of facts that
have in the past prevented the adoption of FM and that can be expected to persist into the future
at least as obstacles if not as barriers. It must be remembered that FM have been advocated for
over twenty years [42], [43], [44] and that their practical applications are still largely confined
to protocols and security kernels.

106

1. The system specification for a Class IE system is an interface document between an
application domain expert (the plant operator) and a system developer who also has
considerable domain expertise. The adoption of FM which are non-domain-specific and
emphasize a high degree of abstraction will be regarded as a hindrance to a normal
exchange of information. The success of FM in protocols and security kernels may be
precisely due to these subjects transcending domain expertise. While the software
specification is a step further from the application domain, it is still very much influenced
by domain specific knowledge. If a formal software specification is developed from an
open language system specification without recourse to domain knowledge there is
considerable risk that requirements will be overlooked or misinterpreted. Note also that
the lowest program cost and the highest reliability have been found in the "organic"
environment (where programmers are part of an organization engaged in the application
domain) [45].

2. The formal specification is of necessity derived from a plain language document, either
a system specification or a software requirements specification. The required translation
is outside of the realm of formal proofs.

3. The system as well as the software specification are dynamic documents. This is
specifically recognized in the spiral model of software development [12] but has been a
de facto procedure in the nuclear systems field for many years. Specification is an
element of design at a higher level, and design involves constant trade-offs of needs
against capabilities. The literature on FM does not deal with the adaptation of the formal
notation to the need for change and trade-offs. The validity of a formal verification
usually extends over a defined scope of the program. Any change within that scope may
necessitate repetition of the verification process. A workshop sponsored by the
Requirements Engineering Project at SEI recommended an "evolutionary, incremental
approach; multi-disciplinary teams; and more up-front requirements work using
prototyping." No mention of FM is found in that document [46].

4. The large number of FM languages and approaches that have appeared in recent years
leads to the impression that there are significant shortcomings that must be overcome by
further development. Although some FM languages have seen more use than others there
are no practical guides for selection.

One of the well known FM languages is PAISLey, which has been under development
at the Software and Systems Research Center of AT&T Bell Laboratories since 1979. Because
good documentation is available in the open literature it is used here as example for the
"cultural" factors that must be overcome by FM although the technical advantages of recent FM
languages are recognized. The leader of the PAISLey development team recently summarized the
results and addressed the obstacles that must be overcome to gain acceptance for FM even in an
environment that is very research minded and where exceptionally high levels of software
engineering education exist [47]. Of 35 PAISLey applications described in the article, 22 were

107

the work of the author and were predominantly undertaken for research on the language, I I
originated in academic environments predominantly as classroom examples, and for the remaining
two only fragmentary information was supplied but they were probably involved with telephone
applications within Bell Labs. One of the author's applications was a Submarine Lightguide
system for which it is stated that it became "the official requirements specification document."
The author characterizes the acceptance of PAISLey as follows:

PAISLey has enjoyed a substantial amount of use in education. It is an excellent
illustration of many concepts, such as concurrent processes, asynchronous
interactions, data flow, functional abstraction, and real-time constraints.These
attributes make PAISLey a good choice for classroom and laboratory projects.

Although PAISLey has been used on real projects when I participated, there is no
autonomous industrial user community. And because I hoped that the experiences
of a user community would show cost-effectiveness, I did not plan for any other
type of evidence ...

It is often the case that a little formalization goes a long way. This proved true
in the Submarine Lightguide project where the specification of the interface to the
database --- a minor piece of the specification --- had disproportionate impact.
This piece of the specification is easily readable with almost no training (being no
more than signatures of the transactions), but it generated a lively and illuminating
review session because this global information had never been systematically
recorded and there were many misconceptions.

The "formal" character of FM (being capable of proof, preserving their validity under
a defined set of transformations) rests on classifying the requirements of the specific application
into concepts at a much higher level of abstraction at which mathematical concepts can be used.
As an example the temperature measurement in a vessel can be classified as an observation of
the state of the vessel, and the state of the vessel can in turn be classified as a set with a defined
number of unique (disjoint) members, such as high temperature, normal temperature, and low
temperature. From set theory it can then be "proved" that the vessel cannot be at high
temperature state and norma! t emperature state at the same time. The question whether high,
normal and low temperature form the exhaustive membership of the vessel-state set is more
realistic. It all depends on the definition of that set. Superficially it may be assumed that the
three states form a "naturally" closed set. But what about transition states, start-up and
shut-down conditions, etc.? It is in mapping of domain-specific conditions into the limited and
abstract constructs of FM that interesting insights can be gained and (possibly) some oversights
or misstatements in the specification can be avoided. This is what the last paragraph in the
quotation from the PAISLey review article refers to.

108

Whether significant benefits are realized by employing FM depends to a great extent on
whether the domain experts are willing to be trained in the definitions, notation and operations
of a specific FM language, and how well the formal specification can subsequently be proven and
faultlessly translated into the design and source code. Several problems arise along the way:

1. FM depend on either set theory and prepositional calculus or on advanced graph
structures such as Petri nets; some approaches require both. Because the basic symbols
of these disciplines are inadequate or highly inefficient for representation of practical
specifications they have to be augmented by specialized symbols defined for each
language. Examples of the use of special symbols in Z and VDM are shown in Figure
5.4 [35]. These languages are generally regarded as among the most readable ones, and
the specification of the symbol table is one of the easiest ones to implement in FM. How
much training is required to become proficient in a typical FM language? In the
previously quoted work on PAISLey it is stated that roughly five days of training may
be sufficient to write a specification. But this is followed by an important reservation "...
training time is dramatically affected by factors such as whether students are familiar with
... concurrent processes and functional programming [and] whether classroom examples
are familiar ..."

2. With regard to tool support for proof and transformation of programs one of the foremost
proponents of FM offers the following observations: "[In the U. S.] the tools-heavy
security-driven approach has produced a vibrant research community ... but to date few
lessons have been carried over to other ... applications ... where more attention must be
paid to cost. ... By contrast, the variants of the European-originated Z and VDM methods
can be more readily ... used with little or no tool support ..." [48]. This is also evident
in a description of an apparently successful application of VDM by Rolls-Royce and
Associates to a microprocessor based protection system [49]. As was pointed out in our
interview with the FM specialists at SEI, the primary benefit of their approach based on
Z is in forcing the domain expert into formal thinking about the specification, not in
proving it, and the same appears also true of PAISLey. However, this also implies that
the activities downstream of the specification phase are essentially conventional, must be
followed by conventional verification and test, and are subject to the same risk as exists
at present.

3. Decisions that should be deferred until design may be impacted by the formal
specification or, if the constraint is not recognized, the decisions may invalidate the
specification. Examples of this type arise in the partitioning of the overall software into
programs and of the programs into modules, in arriving at a sequence of executions, and
allocation of programs to processors. Even where the main program runs in a continuous
loop on a dedicated processor, as is the case in most Class I E systems, there are program
interfaces with supervisory, diagnostic, and hardware test processors that require very
careful consideration under these constraints. Separation of plant operation functions from
display handlers, record generation, etc. is highly desirable for safe operation of the

109

Cut and Paste

Figure 5.4: Examples of Formal Methods Languages

110

system but may not be attainable if it is not recognized in the FM used for the
specification.

It is therefore concluded that regulatory guidance may encourage the use of FM but
should not mandate it.

5.5 Conclusions and Recommendations

The preceding sections of this chapter have identified promising approaches to both fault
avoidance and fault tolerance. While significant strides have been made in systematic approaches
to fault avoidance they are still short of demonstrated ability to assure fault free performance.
For applications in Class 1E software it is therefore necessary to provide fault tolerance until
conclusive proof of fault free performance by other means can be obtained.

Demonstration projects for established techniques of software fault tolerance, primarily
the recovery block and n-version programming, have shown some flaws in their performance.
In addition, even if complete ability to tolerate software faults were shown, there would still be
concern about the completeness and accuracy of the requirements to which all versions were
designed. For these reasons functional diversity is recommended as the preferred approach to
fault tolerance. Before discussing this selection further, it must be acknowledged that the failure
probabilities associated with the software fault tolerance techniques are several orders of
magnitude smaller than those of non-fault tolerant software. Thus there is reason to employ
software fault tolerance in selected areas as recommended in earlier sections.

By functional diversity is meant the assessment of the plant state by a number of
independent variables, such as temperature, pressure, and neutron flux. The employment of
several variables, each with its specific algorithm for assessment of the plant state, provides
significantly higher assurance against omission of a critical requirement, or misinterpretation of
a requirement in the formulation of the software specification, than is possible in a methodology
based on software diversity alone. The functional diversity described here also inherently
enforces software diversity.

In some applications functional diversity is provided outside the scope of the software
effort, such as in a core monitor in an environment where steam pressure and coolant temperature
are used in other plant protection systems. In these situations software diversity, or possibly even
fault avoidance techniques, may provide adequate reliability.

These conclusions are based on qualitative arguments, and this is also the case with most
of the material presented in the body of this chapter. However, significant progress can be
achieved by transitioning to quantitative techniques based on specific values for the maximum

111

acceptable failure on demand of a protection system. This will necessarily involve an assessment
of other protective measures that may act against the same hazard and of the probability of events
that pose the demand on the protection systems. These are issues of public policy that are not
addressed here. But quantitative requirements will allow more cost-effective software techniques
and more objective regulatory review to be employed. Research in this area is therefore
recommended.

112

Appendix A

CASE Tools Supporting Class 1E Software
Process

Much of the CASE tools information used in this study was obtained from USENET News
Articles in news groups such as "comp.lang.ada" and "comp.std.ada," etc.

An evaluation of the tools was not possible within the scope of this effort. However,
some of the tools have been evaluated by the USAF Software Technology Report Center at Hill
Air Force Base, Utah as part of the Upper CASE Tools Evaluation Project. Reports of these
evaluations can be obtained from:

Software Technology Support Center
Attn: Customer Service
Hill AFB, UT 84056

A.1 Checklists of CASE Tools for the Design and

Development Environment

A.1.1 CASE Tool Features

This section discusses the functional features of CASE tools. The features are used to assess the
capabilities of the CASE tools in the design and development environment for class lE
applications. The representative CASE tool functionalities can be classified into eight categories:
information capture, methodology support, model analysis, requirements tracing, data repository
and documentation. The classified CASE tool features in each category are shown below. This

113

scheme is used in later sections to identify the features offered by commercial tools and their
applicability to the design of Class 1E software as exemplified in the Ontario Hydro standard [a].

A. Information Capture

1. system function descriptions

2. data descriptions of system functions interfaces

3. data descriptions of system input/output device interfaces

4. system logical behavior

5. system timing behavior

6. hardware/software context

7. software process control

8. project information

9. missing information prompts

B. Methodology Support

1. structured analysis

2. structured design

3. object-oriented design

4. object-oriented analysis

5. object interaction diagrams or structure graphs

6. entity relationship modeling

7. ADARTS

8. Petri Nets

9. statecharts

114

10. axiomatic specification

11. data flow diagrams

12. block diagrams

13. control flow diagrams

14. state transition diagrams

15. Petri Net diagrams

16. structure charts

17. flow charts

18. object hierarchy or tree diagrams

19. hierarchical diagram organizations

C. Model Analysis

1. consistency checking

2. completeness checking

3. man/machine interface analysis

4. behavior analysis

5. scenario-based analysis

6. exhaustive analysis

D. Requirement Tracing

1. multiple requirements baselines

2. tracing of system requirements to software requirements

3. tracing of system design specifications to software requirements

4. tracing of requirements to software design

115

5. tracing of requirements to source code

6. tracing of requirements to software test

E. Data Repository

1. initial data input to the database

2. use a centralized database

3. support access control

4. contain test description and procedures

5. support interactive cross-referencing

6. history reports generated

7. difference reports generated

8. multiple baseline revision/versions

9. reconstruction of previous baselines

10. changes implemented across configurations

F. Documentation

1. automatic generation of documentation

2. support documentation standards

3. requirement documents

4. design specification

The CASE tools under this study are: CASE-i, CASE-2, CASE-3, CASE-4, CASE-5,
CASE-6, CASE-7 and CASE-8. Table A. 1 shows the programming languages the tools support
and the host operating systems on which the tools can run. CASE-2 addressed here includes the
language modules for Ada, C and C++. Table A. 36 on P. 146 lists tool names associated
with each code.

Our study is based on the information from the evaluation of CASE tool functional
capabilities dore by Software Technology Support Center, Hill Air Force [50] and Internet News

116

Articles. Appendices A.1.2, A.1.3, A.1.4, and A.1.5 provide the CASE tools checklists for
Design Input Documentation, Software Requirements Specification, Software Design
Documentation, Code, respectively. The checklists are based on the functional features.

Table A. 1: Programming Language and Host System Information

I Programming Languages Host Systems

TOOLS C C++ Ada DOS Mac Unix VMS

CASE-1 / / / / ,'

CASE-2 V/ W/ V or o V Of

CASE-3 V Wf , / Io/ 4 W

CASE-4 V -/ ,/ /

CASE-5 O f / " /

CASE-6 O V .,

CASE-7 or O O f /

CASE-8 te Vo l ,

A.1.2 CASE Tools Checklist for the Design Input Documentation

The following list illustrates the tool capabilities supporting requirements for the Design Input
Documentation (DID). Each of the requirements defined in the Ontario Hydro document
(Standard for Software Engineering of Safety Critical Software) is shown and followed by the
CASE tools capabilities supporting them (shown in italics).

a. Partition the system so that the safety critical software subsystem is isolated from other
subsystems and software functionality not associated with meeting the minimum
performance specification of the special safety system is minimized. --- structure charts
(B. 16), data flow diagram (B. 11).

b. Define all functional, performance, safety, reliability, and maintainability requirements of
the subsystem, clearly identifying the safety requirements. --- requirement documents
(F.3).

117

c. Identify each computer within the computer system and includes a description or

reference to the computers' characteristics, such as memory capacity, instruction sets,

speeds, and input/output registers. --- hardware/software context (A.6).

d. Define all details of the interfaces with external inputs and outputs. --- data descriptions

of system I/O device interface (A.3).

e. Define all accuracy requirements and tolerance. --- requirements documents (F.3).

f. Define all failure modes, and the appropriate response to them and identifies any degraded

operation modes required. --- requirements documents (F.3).

g. Define any constraints placed on the design options --- design specifications (F.4).

h. Factor in relevant experience from previous developed systems. --- no supporting feature

among the tools under study.

i. Limit and localize the use of complex calculations upon which safety critical decisions

depend. --- structure chart (B.16), data flow diagram (B. 11).

j. Contain no requirements that are in direct conflict with each other. --- interactive

cross-referencing (E.5), consistency checking (C. 1).

k. Provide a clear definition of terms. --- no supporting capability among the tools under

study.

1. Define anticipated changes and enhancements to the system. --- project information (A.8).

m. Define each requirement uniquely and completely in one location to prevent inconsistent

updates and to facilitate easy referencing by subsequent documents and verification

processes. --- support access control (E.3), use a centralized database (E.2).

n. Contain or reference a revision history. --- history reports generated (E.6), difference
reports generated (E.7).

Table A.2 presents the summary of the capabilities of the CASE tools in our study with

respect to the requirements for the DID shown above. The numbers listed in the columns "a"

through "n" represent the capability of the corresponding tools supporting the requirements
indicated by the letters. For example, CASE-6 has two types of features supporting the

requirement "a," namely, structure charts and data flow diagrams. These two features enable
a software engineer to analyze the interactions between subsystems so that they can subsequently
partition the system with safety. The numbers in the column marked "total" represent the
overall extent of capabilities supporting DID.

118

" Tool(s) offering best support: CASE-2, CASE-8

" Two tool combination(s) offering best support: CASE-2/CASE-8

"* Requirements not supported by any tool: h (factor in experience), k (clear definition of
terms)

Table A.2: Tool Features in Support of Design Input Documentation

Ontario Hydro Requirements

a b T d e f Ig Ih i IjI k I m n

TOOLS Number of Features in Support TOTAL

CASE-1 1 0 1 1 0 0 0 0 1 1 0 1 2 0 8

CASE-2 2 1 i I 1 I 1 0 2 1 0 1 2 2 16

CASE-3 2 1 1 1 1 I 1 0 2 2 0 0 2 0 14

CASE-4 2 1 0 ! 1 1 I 0 2 1 0 1 0 I 12

CASE-5 2 i 1 1 1 1 1 0 2 2 0 1 2 0 15

CASE-6 2 1 0 0 1 I 1 0 2 2 0 I 2 2 Is

CASE-7 I 1 0 I 1 1 1 0 1 1 0 I 2 2 13

CASE-8 2 1 1 1 1 1 I 0 2 2 0 i 2 1 16

A.1.3 CASE Tools Checklist for the Software Requirements
Specification

This section presents the evaluation of the CASE tools with respect to their capabilities
supporting the software requirements specification (SRS). The tools are investigated by
contrasting the detailed acceptance criteria for SRS to tools' features. The results are shown in
Table A.3 to Table A.9.2 Each table corresponds to one of the criteria categories, namely,
completeness, correctness, consistency, verifiability, modifiability, traceability, understandability
and robustness. The first column of each table lists the names of the tools. Each row itemizes
the features of the corresponding tool supporting the criteria in a specific category. For example,
criteria for SRS's modifiability is defined as "define each unique requirement once to prevent

2The absence of table corresponding to the criteria of verifiability for SRS is due to the fact

that the CASE tools under this study have no feature to support the criteria.

119

inconsistent update." Accordingly, in Table A.6, features such as "use centralized database"
and "support access control" are listed because they are the means of enforcing consistency.
That is, the use of a centralized database makes the concurrency control easier and access control
assures that all the updates are done by authorized personnel. Table A. 10 summaries the results,
in which each figure represents the number of tool features that support a specific attribute of
SRS.

Table A.3: Tool Features in Supporting Completeness of SRS

Tools Petri Nets Statecharts Completeness Scenario
(B.8) (B.9) (C.2) (C.5)

CASE-1 V/

CASE-2 v / /,

CASE-3 / /

CASE-4 /

CASE-5 W

CASE-6 I

CASE-7 v

CASE-8 v ,,_ ,_

* Tool(s) offering best support: CASE-2

* Two tool combination(s) offering best support: N/A

120

0.

00

Z0 0

00

0) CCU4 cn c n cn c

< < < <
u u u uu u

4.) 121

Table A.5: Tool Features in Supporting Consistency of SRS

Tools Petri Nets Statecharts Completeness Scenario
(B.8) (B.9) (C. 1) (C.5)

CASE-1 W/

CASE-2 W/ / / V

CASE-3 V Wf

CASE-4 If

CASE-5 / ,V

CASE-6 Vf

CASE-7 vf

CASE-8 If If I"

Tool(s) offering best support: CASE-2

Two tool combination(s) offering best support: N/A

122

00

14R

CCI

i-..

-q m) \C r

0
<Q

u uuu

~.)123

Table A.7: Tool Features in Supporting Traceability of SRS

Tools Spec to Req. History Cross Referencing
(D.3) (E.6) (E.5)

CASE-1 v

CASE-2 W /

CASE-3 / /

CASE-4 Or

CASE-5 or

CASE-6 If

CASE-7 O /

CASE-8 / /

Tool(s) offering best support: All except CASE-1, CASE-4

Two tool combination(s) offering best support: CASE-2/CASE-8, etc.

124

Cd d

00

C#2 0 0

00
00 C'

o 0o

660

0 c0
Cd~

Cý Cý0
0 o)

0 0
cn w n U, n. '

0125

Table A.9: Tool Features in Supporting Robustness of SRS

Tools Scenario-Based Analysis
(C.5)

CASE-I

CASE-2

CASE-3

CASE-4

CASE-5

CASE-6

CASE-7

CASE-8 /

Tool(s) offering best support: CASE-2, CASE-8

Two tool combination(s) offering best support: N/A

126

00

CU-

C4 c 40 & n E
0 u ur uo r- '1 u

12

A.1.4 CASE Tools Checklist for the Software Design Description

This section presents the evaluation of the CASE tools with respect to their capabilities
supporting the Software Design Description (SDD). The tools are investigated by contrasting the
detailed acceptance criteria for SDD to tools' features. The results are shown in Table A. 11 to
Table A.19. Each table corresponds to one of the criteria categories, namely, completeness,
correctness, predictability and robustness, consistency, verifiability, modifiability, traceability,
modularity, and understandability. The first column of each table lists the names of the tools.
Each row itemizes the features of the corresponding tool supporting the criteria in a specific
category. For example, criteria for SDD's predictability and robustness include that software
system provides required response to all identified error conditions. Accordingly, in Table A. 13,
features such as "scenario-based analysis," "system-timing behavior" and "exhaustive model
analysis" are listed. Table A.20 summaries the results, in which each figure represents the
number of tool features that support a specific attribute of SDD.

Table A. 11: Tool Features in Supporting Completeness of SDD

Tools Petri Nets Statecharts Completeness Scenario Object hierarchy
(B.8) (B.9) (C.2) (C.5) (B. 18)

CASE-I / /

CASE-2 / / / / /

CASE-3 / / /

CASE-4 / /

CASE-5 / / V"

CASE-6 /

CASE-7 / I

CASE-8 / V I

Tool(s) offering best support: CASE-2

Two tool combination(s) offering best support: N/A

128

.0.

>

0P

CA'

04)0
0 o. N.N

00

ON

o 0

4))

U, c

4) - - 1(A

<U<

* 0. u uu

129

Table A. 13: Tool Features in Supporting Robustness of SDD

Tools Scenario-Based Logical Timing Exhaustive

CASE-I _ /V
CASE-2 / t /

CASE-3

CASE-4

CASE-5 / /

CASE-6

CASE-7 _ /
CASE-8 / / / /

Tool(s) offering best support: CASE-8

Two tool combination(s) offering best support: N/A

Table A.14: Tool Features in Supporting Consistency of SDD

Tools Consistency Checking

CASE-1 /

CASE-2 /

CASE-3 /

CASE-4 /

CASE-5 W/

CASE-6 /

CASE-7 /

CASE-8 /

Tool(s) offering best support: All

Two tool combination(s) offering best support: N/A

130

Table A.15: Tool Features in Supporting Verifiability of SDD

Tools Petri Nets Petri Net Logical Timing Exhaustive
Diagram Behavior Behavior Analysis

(B.8) (B. 15) (A.4) (A.5) (C. 6)

CASE-1 V

CASE-2 V V V /

CASE-3

CASE-4

CASE-5 V /

CASE-6

CASE-7 W/

CASE-8 V/ V/ W ,/ W

Tool(s) offering best support: CASE-8

Two tool combination(s) offering best support: N/A

131

0

4.4

t00
o.

0

00

0- - 0

.0 (A1 C(A 0(

o C--' 4..

< < < < <

132

S.... . - -- -- -,,, ,I~mmmnnmmn ~

Table A. 17: Tool Features in Supporting Traceability of SDD

Tools Req. to Design History Cross Referencing

CASE-I

CASE-2 W .

CASE-3 0 /

CASE-4 ,_

CASE-5 V /

CASE-6 / /
CASE-7 / /_
CASE-8 / _

Tool(s) offering best support: CASE-2, CASE-8, etc.

Two tool combination(s) offering best support: CASE-2/CASE-8, etc.

Table A.18: Tool Features in Supporting Modularity of SDD

Tools Structured Structure IOOD Hierarchical Object

CASE-I I/ V ., /

CASE-2 W / / / /

CASE-3 Of / / /

CASE-4 O / If /
CASE-5 / I / / /

CASE-6 __

CASE-7 / _

CASE-8 o f I / /

Tool(s) offering best support: CASE-2, CASE-8, CASE-1, CASE-3, CASE-5

Two tool combination(s) offering best support: N/A

133

Table A. 19: Tool Features in Supporting Understandability of SDD

Tools Data flow Block Flow Structure Ctrl-flow ER
Diagram Diagram Chart Charts Diagrams Modeling
(B.11) (B.12) (B.17) (B.16) (B.13) (B.6)

CASE-1 ,_

CASE-2 / gf , ,t , /

CASE-3 W/ W/

CASE-4 , / ,t

CASE-5 , " / ,f If /

CASE-6 V ,V

CASE-7 ,(I

CASE-8 W, , , / I/ Vf

" Tool(s) offering best support: CASE-2, CASE-8, CASE-5

" Two tool combination(s) offering best support: N/A

A.1.5 CASE Tools Checklist for the Code

This section presents the evaluation of the CASE tools with respect to their capabilities
supporting the Code. The tools are investigated by contrasting the detailed acceptance criteria
for Code to tools' features. The results are shown in Table A.21 to Table A.29. Each table
corresponds to one of the criteria categories, namely, completeness, correctness, predictability and
robustness, consistency, structuredness, verifiability, modifiability, traceability, and
understandability. The first column of each table lists the names of the tools. Each row itemizes
the features of the corresponding tool supporting the criteria in a specific category. For example,
criteria for Code's understandability include that the code must be formatted to enhance
readability. Accordingly, in Table A.29, features such as "support documentation standard" and
"automatic generation of documentation" are listed. Table A.30 summaries the results, in which
each figure represents the number of tool features that support a specific attribute of Code.

134

C4 04 - ' 4 '

-0 C14 V) -

CIO

*00

4) >4

C6,

C.CI

CCA

>13

Table A.21: Tool Features in Supporting Completeness of CODE

Tools Input to database Cross-Referencing

CASE-1 W/

CASE-2 Of

CASE-3 v /

CASE-4

CASE-5 v /

CASE-6 _

CASE-7 /

CASE-8 /

Tool(s) offering best support: CASE-3, CASE-5

Two tool combination(s) offering best support: N/A

Table A.22: Tool Features in Supporting Correctness of CODE

Tools Req. to code Reg. to test7 Test description

CASE-1 / ,f

CASE-2 / ,/

CASE-3 /
CASE-4

CASE-5

CASE-6 O f

CASE-7 / / /

CASE-8 / v/

Tool(s) offering best support: CASE-2, CASE-8, CASE-7

Two tool combination(s) offering best support: N/A

136

Table A.23: Tool Features in Supporting Predictability and Robustness of CODE

Tools Scenario-Based Analysis Test Descriptions and Procedures

CASE-1

CASE-2 / /

CASE-3

CASE-4

CASE-5

CASE-6

CASE-7 _

CASE-8 / /

Tool(s) offering best support: CASE-2, CASE-8

Two tool combination(s) offering best support: N/A

Table A.24: Tool Features in Supporting Consistency of CODE

Tools [Consistency Checking

CASE-1 /

CASE-2 t/

CASE-3 /

CASE-4 /

CASE-5 ,

CASE-6 /

CASE-7 /

CASE-8 /

Tool(s) offering best support: All

Two tool combination(s) offering best support: N/A

137

Table A.25: Tool Features in Supporting Structuredness of Code

Tools [Structured Analysis

CASE-1

CASE-2 /

CASE-3 /

CASE-4 /

CASE-5 /

CASE-6

CASE-7 /

CASE-8 /

Tool(s) offering best support: All except CASE-1, CASE-6

Two tool combination(s) offering best support: N/A

Table A.26: Tool Features in Supporting Verifiability of CODE

Tools Hardware/Software Context Software Process Control

CASE-I /

CASE-2 / /

CASE-3 / /

CASE-4 /

CASE-5 / /

CASE-6 __

CASE-7 /

CASE-8 / O

Tool(s) offering best support: All except CASE-6, CASE-4, CASE-7

Two tool combination(s) offering best support: N/A

138

to

00
om o

0 \0

o o

00
> 0 04

En, El)000) (V V

u~~/ u

139w

Table A.28: Tool Features in Supporting Traceability of Code

Tools Req. to Code History Cross Referencing

CASE-I '

CASE-2 I/ V/

CASE-3 W/ /
CASE-4

CASE-5 v_

CASE-6 / / v

CASE-7 6/ /
CASE-8 ,/ E v

Tool(s) offering best support: CASE-6

Two tool combination(s) offering best support: N/A

Table A.29: Tool Features in Supporting Understandability of Code

Tools Auto Support Documentation Cross

CASE-1 / /

CASE-2

CASE-3 V/ O

CASE-4 / ,

CASE-5 W/ / ,/

CASE-6 V" /

CASE-7 v_

CASE-8 W / /

Tool(s) offering best support: CASE-3, CASE-5, CASE-6, CASE-8

Two tool combination(s) offering best support: N/A

140

ca-

(U 4 - o en t4 en - o %0 f

79

*0

ow
Uz

00

00

C,,

J UiU

141

A.2 Checklists of CASE Tools for Testing

A.2.1 Tools Supporting Complexity Measurement

Complexity measurement analyzers calculate the complexity of software elements (e.g.
subprogram, module, program) from some associated characteristics. These tools provide
guidance toward potential problem areas in the code (those areas with high complexity). Some
of these tools provide test path information for developing tests. Tools which calculate code
statistics, McCabe's cyclomatic complexity metric, Halstead's Software Science metrics, and
complexity metrics based on a summation of code element complexities are of particular interest.
The definitions of the metrics are as following:

"• Code metrics usually measure the number of lines, number of source line of code, number
of comments, etc.

"* McCabe's cyclomatic complexity metric [511 measures the complexity of control structure
of a program.

"• Halstead's Software Science metrics [521 measure the complexity of a program based on
the number of unique and total operators and operands.

Complexity metrics could be indicators of errors in the code. For example, in Halstead' s
Software Science metrics, predicted bugs is a direct function of the size of an implementation,
which can be thought of as the number of bits necessary to express it. Our recent research
demonstrated that the extended Halstead's metrics (we tailored it to avionics software [53])
correlate with fault density in real-time programs.

Table A.31 summarizes the available tools supporting complexity measurement and their
capabilities, where "A", "C" and "F" stand for programming languages Ada, C and Fortran
respectively.

142

Table A.31: Tools Supporting Complexity Measurement

Tool Language Code McCabeJ Halstead Others

CASE-9 A/C/F / /
CASE-10 Ada , / /
CASE- 11 Ada /
CASE-12 A/C/F ,/ , /
CASE-13 A/C/C++/F / / /
CASE- 14 A/C/F /

A.2.2 Tools Supporting Syntax and Semantics Analysis

Tools supporting syntax and semantics analysis operate on the source code without regard to the
executability of the program. These tools flush out as many errors as possible before testing the
executable code. They can be used to identify coding errors and noncompliance (compilers do
not generally provide sufficient analysis of the code to ensure consistency, portability, propose
code usage, completeness, etc.). Their capabilities consist of the following:

"* Cross references provide referencing of entities to other entities.

"* Structural analysis provides call trees and detect structural flaws within a program (e.g.,
circular calls and unreachable code).

"* Variable analysis checks initialization, usage, types, and scope of variables.

"* Interface diagnostics checks consistency of formal and actual parameters of subprogram
calls, and input, output and system interfaces.

Table A.32 summarizes the available tools supporting syntax and semantics analysis and
their capabilities, where "A", "C" and "F" stand for programming languages Ada, C and
Fortran, respectively.

143

Table A.32: Tools Supporting Syntax and Semantics Analysis

Tool Language Cross Structural Variable Interface
Reference Analysis Analysis Diagnostics

CASE-9 A/C/F /
CASE-10 Ada
CASE- I1 Ada / /
CASE-12 A/C/F / /
CASE- 14 A/C/F V/

A.2.3 Tools Supporting Test Coverage Analysis

Test coverage analysis tools assess test adequacy measures associated with the program structural
elements. Coverage analysis is useful in structural testing which attempts to execute each
statement, branch, path, or module.

Table A.33 summarizes the available tools supporting coverage analysis.

Table A.33: Tools Supporting Test Coverage Analysis

Tool Language Statement Branch Path Module

CASE- I1 Ada 1/ 0 I
CASE-12 A/C/F V/ /
CASE-15 A/C/F 0 / I
CASE-16 A/C/C++/F / / /
CASE-17 A/C/F / / J

A.2.4 Tools Supporting Regression Test

Regression testing verifies that only desired changes are present in modified programs. Ideally,
.all test cases should be re-executed and the results re-evaluated from unit-level through
system-level testing with each required change. However, schedule and cost constraints almost
always prevent this from occurring when modifying large software systems.

144

Tools have been developed which provide automated facilities for performing extensive
regression testing. These tools execute various test cases using pre-recorded keystroke inputs and
then compare actual results of the current test session with expected results.

Regression analysis tools are characterized by the high-level capabilities of capture,
replay, and compare:

"Capture is the capability of recording the inputs (scripts) and outputs (benchmarks) of a
test session. Typically, inputs consist of keyboard inputs, and outputs consist of terminal
screen displays. Text editors create and modify script files or test drivers for some
regression tools.

" Replay is the capability of reissuing pre-recorded inputs (playing back the script). This
ensures that test case inputs are the same as in previous tests and minimizes the tedious,
error-prone procedures that must be executed.

" Compare is the capability of determining that the actual results of the current test session
are the same as those of a previous test session (benchmark). This allows the tester to
focus his attention on resolving discrepancies instead of locating the discrepancies. Some
regression tools can only compare text outputs, while others can compare graphics output.

Table A.34: Tools Supporting Regression Testing

Tool Platform Capture Replay Compare

key mouse screen

CASE- 18 DOS / Text Script Text
CASE-19 DOS W/ Text Script Text
CASE-20 DOS / Text Text
CASE-21 DOS V Text Script Text
CASE-22 UNIX V/ / Graphics Script bit-mapped
CASE-23 VMS / / Graphics bit-mapped

A.2.5 Tools Supporting Test Data Generation

Test data generation is the process of identifying a set of test data which satisfies given testing
criterion. It is one of the most difficult and time consuming parts of software testing.
Unfortunately automatic test data generation is still in the research stage. Table A.35 summarizes
some of the tools, commercially available or research prototypes, for test data generation. These
tools generate test data using different test selection criteria. All these tools have limited

145

capabilities and can only be used to generate some of the test cases of the complete test set.
Among the tools listed in Table A.35 table CASE-25 [541 is research prototypes, the others is
commercially available. The "*" in the column "Language" stands for "language
independent."

Table A.35: Tools Supporting Test Data Generation

Tool Language System Test Selection Criterion

CASE-24 * I Unix/DOS/VMS functional & random testing

CASE-25 C/Fortran Unix mutation testing

Table A.36: Codes for CASE Tools

Code Tool Name

CASE-1 Aisle/Cisle
CASE-2 ObjectMaker
CASE-3 PowerTools
CASE-4 ProMod
CASE-5 Software through Pictures
CASE-6 Super CASE
CASE-7 TAGS Case 2
CASE-8 Teamwork
CASE-9 ACT/BAT
CASE-10 AdaMAT
CASE-11 ATVS
CASE-12 Logiscope
CASE-13 PC.Metric
CASE-14 VAX SCA
CASE-15 SAW
CASE-16 STW/COV
CASE-17 VAX PCA
CASE-18 Automator
CASE- 19 AutoTester
CASE-20 Bloodhound
CASE-21 Check*Mate
CASE-22 STW/REG
CASE-23 DEC/DTM
CASE-24 T
CASE-25 Mothra

146

Appendix B

Examples of Fault-Tolerant Safety System
Design

B.1 Background

The body of this report points out that the highest degree of reliability for fault tolerant systems
is at present achieved with functional diversity. On the other hand, an essential advantage of
digital over analog processing is the ability to perform a comprehensive evaluation of Ehe state
of a plant by taking into account the indications from a number of diverse sensors. In order to
achieve this advantage some of the independence of the diverse indications is sacrificed in the
common evaluation algorithm. This section

"* presents a methodology for the comparative evaluation of fault tolerant hardware/software
architectures that incorporate functional diversity

" outlines examples of three architectures that maintain the multi-channel approach found
in current analog plant protection systems and therefore minimize the difficulties of
transitioning from analog to digital technology (the term outline is deliberately used to
indicate that only essentials are shown and evaluated)

"• identifies hardware/software fault tolerance features that are evaluated as particularly
beneficial in this context.

Most current systems employ analog technology in the form shown in Figure B. I in which
operation of the protective system is controlled by individual plant variables processed in
hardware redundant channels. Direct translation of this approach into digital equipment is
possible (e.g., Ontario Hydro is developing a digital trip meter [55]), but this does not achieve

147

the advantages of digital technology in hardware integration (important for reduction of
maintenance costs) and in the comprehensive evaluation of the plant state that was mentioned
above.

Sal -al a3 H-Sa3
threshold - threshold

AND AND

Sa2 - Sa4

threshold- a2 a4 threshold

OR

Replicated for other

plant variables

Figure B. 1: Analog Implementation

The architecture of Scheme I, shown in Figure B.2, is specifically intended to achieve
these advantages: three different sensors are processed in each computer, and the operation of
the protective system is controlled by a single output from each computer that represents an
assessment of the plant state based on the combined information from the three sensors (the
structure of the computer program is discussed later). An alternative approach, Scheme II, is
shown in Figure B.3. Here three signals are processed in each computer but the outputs are
combined externally with AND gates that activate the protective function when at least two out
of four outputs derived from a given sensor type call for trip. This achieves hardware integration
but sacrifices the advantage of comprehensive evaluation. The notation used in the figures is
explained below.

Sai input data from sensor i for plant variable a (e.g. temperature).

Sbi input data from sensor i for plant variable b (e.g. pressure).

Sci input data from sensor i for plant variable c (e.g. flux).

ai output of Trip function using data from sensor i of type a.

bi output of Trip function using data from sensor i of type b.

ci output of Trip function using data from sensor i of type c.

xj output of combined Trip function from computer j.

148

Sal Computer x1 x3 Computer __ Sa3
Sbl Sb3
SO 1 3 Sc3

AND CAND

Sa2 Computer I Computer ---- Sa4
Sb2 2 x2 x4 4 Sb4
Sc2 Sc4

Trip

Figure B.2: Scheme I System for Generation of Trip Signal

149

Sal I Computer al a3 Computer Sa3
Sbc1 bl b3 Comp Sb3
Sl cl c3 -3 Sc3

Sa2 Computer a2 a4 Computer L Sa4
Sb2 b2 b4 -- 1 Sb4
Sc2-• 2 c2 c4 4 Sc4

al

a2
a3 ,I!

a4

Results from type b sensors Results from type c sensors

Trip

Figure B.3: Scheme II System for Generation of Trip Signal

B.2 Definitions and Assumptions

1. System failure:

"* Type-i: System fails to generate Trip signal given that Trip is necessary.

"* Type-2: System generates false Trip signal when Trip is unnecessary.

2. Sensor Error: Sensor supplies erroneous data leading to a wrong decision of the Trip
function.

3. Trip Function Error: Software generates erroneous computational result leading to a
wrong decision on Trip action. The assumed software structure for Scheme I is shown

150

in Figure B.4. The common State Evaluation function is assumed to contain between
1% and 10% of the failure probability for an individual sensor chain. Scheme II does
not include a common State Evaluation function.

4. Computer Failure: Computer becomes non-operational and is perceived as "stuck on
zero."

5. System Parameters:

"* Redundant computers have the same probabilities of becoming non-operational.

"* Redundant sensors have the same error probabilities.

"* Redundant Trip functions have the same error probabilities.

6. Single Gate Error: Negligible likelihood (can be achieved by self-checking gates).

Sensor aSte
(Calibration, State
filtering, computation
conversion) a

Sensor b State State. (Calibration, L
-- teincomputation I evaluation

b -
conversion)

Sensor c State
(Calibration, computation
filtering,.
conversion) c

Figure B.4: Software Structure for Scheme I

B.3 The Models

B.3.1 Notations

The following notations are used in the mathematical models for computing system unreliability.

q, = P(sensor error).
qf = P(Trip function error).

151

q, = P(computer failure).
qd = P(State Evaluation failure).

qd, = P(Common mode failure of state functions).

Note that qd and qd, are for Scheme I only.

Our quantitative evaluations shown in the following sections are based on the parameter
assignment shown in Table B.1. (Some of the parameters become variables in certain
evaluations.) The assignment is made on the basis of findings in equivalent digital systems
including space shuttle avionics systems.

Table B. 1: Assignments of Parameters for Quantitative Evaluations

Parameter] Value

qs 0.00001
qf 0.00001
qc 0.00001
qd 0.000001
qdc 0.0000001

B.3.2 Failure Type-1

Scheme I We define the following indices.

n: index to sensor type, n e {l ... 3}.
j: index to channel, j e {(1 ... 4}.
k: index to pair, ke {1 ... 21.

We have

P(Type- I Failure)

2

=-I P(pair k fails)
k=-I

ilI P(channel j fails) +qdc(I -q,){l P(channel j fails) +q,.(1 -q,.)

152

And

P(channel j fails) = H~ (qsn,+qf)Jl qdd~dC)+qdf -q,) +qc.

Therefore,

P(Type-1 failure) = 12 (q +q)3.(-qd -q)+ql](-q,)+q} +q(,(l qC)2 (B. 1)
k={

Scheme II

P(Type-1 failure) = P(at least 3 computers fail) +
P(at most 2 computers fail & system fails to generate "Trip").

P(at least 3 computers fail) = qc4 4j c(1 -qc).

P(at most 2 computers fail & system fails to generate "Trip") =

(l-q)(qs+q)4 +4 qs +qf)3 l -q, -qf)f +

S4 f l q~'•q+;3 3 qsq l--q)+

(-qC)2"q(q,+ }s +qf)2 '(I -q -qf) +

Therefore

P(Type- I failure) - 4q 3 -3"q:+

(1 -qc)(q +q1)4 +4 1q5 qf)3(1 -q -qf)]3+ (B.2)
4 1 -qc)3 "q[(qs+q1)

3 +3 (qq qf) 2 .(1 f -qs)] +

6 "(1 -qc)2 .q2[(q +qf)2 +2 (s q +qf) (q 1 -qs)

153

B.3.3 Failure Type-2

Scheme I Again we use the notations:

n: index to sensor type, n e { 1 3}.
j: index to channel, j E {1 4).
k: index to pair, k (I ... 2).

2

P(Type-2 Failure) -- P(pair k fails)
k=I

2

H- P(channel j fails) +qc(1 -qC) 2 +

j-I

4

-I P(channel j fails) +q(1-q C)2

j=3I

And

P(channel j fails) =E (qn +qf} 1 -qd) +qd }(1 -qc).

Therefore,
2

P(Type-2 Failure) =E"• {{[3 "qs, +qI) (1 -qd) +qdl 1 -qc)}2 +qdc(l -qc)2} (B.3)
k=1

=2 j{[3 " q,)(1 -qf) +q] (1 _qd)}2 ÷qdc(q)2}.

Scheme II

P(Type-2 failure) = P(at least 2 computers up & system generates false Trip signal)
= P(4 computers up & system generates false Trip signal) +

P(3 computers up & system generates false Trip signal) +
P(2 computers up & system generates false Trip signal).

P(4 computers up & system generates false Trip signal) =

(1 -qc)4 '3"[(q,+qf) 4 +(% +q) 3 1 I -q. -qf) +

2(4 q +q,) "1 -q, 54q)2],

154

P(3 computers up & system generates false Trip signal)

(4 } 1 -q) 3"q"'3 [(qs,+q 1) 3 J(3 qs~q1)
2"(1 -q-

P(2 computers up & system generates false Trip signal) =(4 }l -q)2q,23 ýqqf)2

Therefore,

P(Type-2 failure) = (1 -qJ)4 3 .[(q, ÷qf) '
4 (q, +qf)3(1 -qI -qf) +6 qf +q,)2 1 -q -qf)2

1 + (B.4)

4"(1 -q,)3qC 3 .[(q +qf)3 +3"(+q÷) 2 (I -q,-qf)] +

6(I -q,)2 q 2 .'3 (q, +qf)2 .

B.4 Comparisons of Schemes I and II

From Eq.'s (B. 1) and (B.2), we notice that computer unreliability (qc) is the major factor
contributing to type- I system failure. The reason is that

I. Compared with sensors, computers have a lower degree of redundancy. That is, for
sensors there are two levels of redundancy while computers have only a single level.
Therefore, computers become the reliability "bottle-neck," and systems are more
sensitive to computer failures.

2. The analysis assumes that all computer failures are stuck-at-zero and multiple ones can
result in type- 1 system failures. While this is pessimistic there are no creditable statistics
that validate a significantly different assumption. By contrast, even multiple sensor
failures are prevented from resulting in type- 1 system failures by the state evaluation
function in Scheme I and by the multiple OR gates in Scheme II.

Accordingly, the probability of type-I failures is primarily evaluated as a function of
computer failure probability as shown in Figure B.5. For type-2 failures the most important
cause is a common software failure in the state computation function for a given sensor type (see
Figure B.4; the left and middle function blocks in this figure are also present in Scheme II). The
probability of type-2 failure is shown in Figure B.6.

155

-5.0

o -6.0 .• Scheme- I

-
-•7.0

.• -8.0

H• -9.0

Scheme-II
-10.0

4)

•. -11.0

4j

4 . - 1 3 . 0
I

S-14.0

-15.0
,

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
P(computer failure)

Figure B.5: Probability of Type-i Failure as a Function of Hardware Failure

Figure B.5 shows that Scheme II is superior to Scheme I. By looking into Eq.'s (B.1)
and (B.2), it is observed that the dominant term of the former is 4.q,2 while that of the latter is
4.q 3 . This is due to the following reasons. In Scheme I, any two computer failures across pairs
lead to Type-i failures. On the other hand, in Scheme II, failure of any two computers is not
a sufficient condition for Type-i failure, but three or more is. The evaluation here is based on
low probability of independent and common mode failures of the state function. When those
probabilities become high, the Type-i failure probability difference between Schemes I and II
will be even more significant. Although the two schemes primarily have the same amount of
redundancies, Scheme II exploits the redundant resources in a more effective manner so achieves
reliability goal better.

156

-5.0

- -5.5

-6.0

-6.5

-7.0

41,

-8.0

-8.5

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
P(state computation function failure)

Figure B.6: Probability of Type-2 Failure as a Function of Software Failure

Type-2 failure is rather insensitive to computer failure probability (primarily due to our
assumption on the computer failure behavior, i.e., "stuck at zero"). Therefore, we evaluate the
probabilities of type-2 failures as a function of software (Trip function) failure. Figure B.6 shows
that the type-2 failure probabilities of the two schemes are getting close when the Trip function
failure probability is high. By looking into Eq.'s (B.3) and (B.4), it is observed that the dominant
term of the former is 2qd,(1-q,) 2 when Trip function failure probability is low, and the dominant
term becomes 18(q,+qf)2(1-qd)(1-qc) 2 when the Trip function failure probability is high while the
dominant term of the latter is always 18(q,+qf)2 (1 -q,-q) 2 (I -q,)4, which mathematically explain the
phenomenon.

It is seen that Scheme II offers greater fault tolerance with respect to both type-I and
type-2 failures, and that this advantage is particularly pronounced for the more critical type- I
failures. However, Scheme II does not provide a comprehensive state evaluation and thus
sacrifices a potential benefit of the digital implementation. The following section describes a
modification of Scheme I which retains its functional advantage while offering appreciably higher
reliability.

157

B.5 Scheme IH - Extended Distributed Recovery Block
(EDRB)

The top level architecture of Scheme II is shown in Figure B.7, and the structural similarity to
Scheme I (Figure B.2) is easily recognized. However, there are also a number of significant
differences: the AND gates at the outputs of the individual computer pairs are replaced by XOR
gates (that actually represent a switching function described below), and the top and bottom
computers in each pair initially run different software versions, called X and Y. The Extended
Distributed Recovery Blocks (EDRB) has been developed under Department of Energy
sponsorship to permit digital techniques to be applied lo the control of critical processes [56].
The underlying fault tolerance techniques are based on extensions of the Distributed Recovery
Block [57]. The EDRB has been installed and integrated with a nuclear process control
application at the Argonne West Experimental Breeder Reactor II.

Sal Computer ul u3 _ Computer Sa3
Sbl 1 Sb3

SO__ 3 Sc3

Sb2 Computer Computer_, Sa4
Sc2 2 u2u4 S4

Trip

Computer Active (1, 3): Computer Shadow (2, 4):

SW version X SW version Y

SW version Y SW ve-sion X

Figure B.7: Overview of the EDRB

A distinguishing feature of the recovery block approach to software fault tolerance is the
acceptance test (AT), a rigorously designed set of assertions that must be satisfied before results
of a computation are communicated outside the computer. In many cases the problem statement
or the specification of the software impose conditions that must be met at the completion of
prograrn cxecuticon. These conditions may be used to construct the acceptance test. Testing for

158

satisfaction of requirements is usually most effective when carried out on small segments of code.
Accounting checks are suitable for transaction-oriented applications with simple mathematical
operations such as airline reservation systems, library records, and the control of hazardous
materials. The simplest form of accounting checks is the checksum. Reasonable tests detect
software failures by use of pre-computed ranges, expected sequences of program states, or other
relationships that are expected to prevail. Reasonable tests are suitable in control or switching
systems where physical constraints can determine the range of possible outcomes. The presence
of this test greatly reduces the probability that a single software failure might lead to a system
level type-2 (unnecessary trip) failure, and this permits the AND gates in Figure B.2 to be
replaced with XOR gates in Figure B.7. With this modification the probability of the architecture
to respond correctly to necessary trips is increased, and, conversely, the probability of a type-1
failure is significantly increased. To understand the quantitative evaluation of these capabilities
it will be helpful to explain the operation of the EDRB in more detail.

A high level version of EDRB operation is shown in Figure B.8. Normally version X of
the software runs in computer 1, and its output is subjected to the acceptance test (AT). If the
test is passed (T exit in the figure), the result of the operation is passed to the output. If the test
is not passed (F exit) the result from version Y running in computer 2 is used, provided that it
has passed its acceptance test. If the acceptance test is not passed the program will be put into
an exception state which is further discussed below. The transition to computer 2 will also take
place when there is a hardware failure in computer 1. The immediate transition on any failure
to a second computer with a different software version provides a very robust type of fault
tolerance, and the ability of this architecture to handle unexpected faults will be evident below.

A more detailed view of the operation of the EDRB is shown in Figure B.9. On failure
of the version X acceptance test in computer 1 the transition to computer 2 takes the form of an
enabling signal going through the OR gate in computer 1 to the AND gate in computer 2 which
then permits the results of version Y to be fed to the output. On detection of a hardware failure
in computer 1 the same enabling signal is transmitted via the OR gate to computer 2.

If version Y in computer 2 does not pass the acceptance test the exception handling
indicated in Figure B.9 will be entered. It consists initially of running version X in computer 2,
and if this is successful permitting its result to be furnished to the output. If that acceptance test
also fails version Y can be run in computer 1 and its result furnished to the output. Finally, if
all versions fail an alarm condition is created which may cause a reactor trip or permit computers
3 and 4 to run in a stand-alone mode, depending on the specific operational requirements.

The quantitative analysis of Scheme III will now be explained with the aid of fault trees
shown in Figures B. 10 and B. 11. The triangles in Figure B. 10 indicate continuations in Figure
B.11.

159

Computer 1 version X

Computr 2 (version Y -
SAT output

fF

Computer 2 , vrIonF

V

T

Exception

Figure B.8: EDRB Operation (high level)

Type-i Failure The following assumptions have been made: when all three sensor chains in a
channel fail to indicate a necessary trip, it is unlikely that the state function or the acceptance test
will alert a Trip.

2

P(Type-l failure)=, (pair k failure)
k=I

Let Q, be the probability that one or more sensor chains indicate a necessary Trip, that
is

Q, =(1 -q, -qf)3 +12)1-q,-qf)2(q,+qf) '3I-q,-qf)(q.,+qf)2.

Let the probability of related errors between the state function and the acceptance test be denoted
as qd,, then we can define the following notations for the case in which both nodes in a pair are
up:

160

version X

AT - output

F"F ,hardware----
• failure

IT

(version Y

ATT

Computer 1 F(alarm

' version Y

ST AN
< AT -

_F <hardwa

version X
T __LI

SAT

Computer 2

Figure B.9: EDRB Operation (low level)

161

Figure B~O: FaultTrpee o yei alr

PFailure

SPair I Type-I Pair 2 Type-1

Faiure Failure

Figure B. 10: Fault Tree for Type- 1 Failure (I)

Q1, = P(node I type- I failure)

= (% + qf)' + Qs "qd,

Qlb = P(node 1 benign failure)
= Q • [(1 - qd) "q% + qd - (1 - q,)]

Q2, = P(node 2 software catastrophic failure)
= (q. + qf)' + Q, - qdt + Q " [(1 - qd) -q% + qd(1 - q t)] d

For the case in which one node is up and the other is down we have:

Q, = P(up-node software catastrophic failure)
= QU

And let the probability that a computer is un-operational be denoted as Qh. Then

Qh = qc

Thus we have:

P(pair k fails) = P(failure I one node down and the other up) +
P(failure I both nodes up) + P(failure I both nodes down)

= (Q,'Q2+Q,,) ()' I J2 Qh) Q6 '+Qh2.

162

S,1

Type-1 failure when
both node up

Aciv IActive benign I

catastrophicfalr
shadow catastrophicIfailurefailure

OR

Related faults Related faults Version y rejected
Sensor chain between Sensor chain between related faults between

failure version x and ATI failure version y and AT version x and AT

//

Type-1 failure when f
one node up I Type-i failure when

and the other down both nodes down

Related faults Version x(y) rejected
Sensor chain between related faults betwee

failure version x(y) and AT version y(x) and ATi

Figure B. 11: Fault Tree for Type-I Failure (II)

P(Type- 1 failure) =(Qb Q2, +Q , (1-Qh) 2 +(2 1Q(1 -Qh) Qh +Qh21. (B.5)

In the evaluation of Scheme III, the value of failure probability of the acceptance test q,
is set to 0.00005. This assignment is conservative since q, is a critical factor for the effectiveness

163

of Scheme III and we relatively do not have much experience with this factor. For consistency,
the probability of related failures between a program version (the state evaluation function) and
the acceptance test qd, is made equivalent to the probability of common mode failure qd, of
Scheme I.

Figure B.12 shows the comparison of the Type-1 failure probability as a function of
computer failure probability. It reveals that except for extremely low computer failure
probability, Scheme III is superior to the other two schemes. The reason is that Scheme III is
least sensitive to multiple computer failures (while Scheme I is most sensitive). For extremely
low computer failure probability, Scheme II appears to be the best because it is free of common
mode or related failures which are major failure causes for Schemes I and III.

-5.0

-6.0 .• Scheme- I

-7.0

-8.0

-9.0 S~Scheme- I

4J10 -10.0

9 -11.0tM
0

(12 -12.0

" " Scheme-IIIS-13. 0

CUS. -14.0

-15.0
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005

P(computer failure)

Figure B.12: Comparison of Scheme I, Scheme II and Scheme HI

Figure B. 13 depicts the improvement of Type-1 failure probability of the Scheme III over
Scheme I, for which the failure probability is evaluated as functions of common mode failure
probability qd, and of related failure probability qd, for the original Scheme I and Scheme III,
respectively.

We observe the reduction of Type-i failure probability due to the EDRB enhancement.
The improvement is most significant when common-mode/related failure probabilities are low.
The underlying reason is as follows. The dominant term for the original Scheme I (Eq. (B. 1))
is (2(q0(l-q,)+q,)+qdc(1-qc) 2)2 while that for EDRB scheme is ((1 -q5 -qf)3.qd,(1-q,) 2)2. This implies
that the factors of computer failure probability and state function independent failure probability

164

-8.0

-8.5
o• m 8. 5Scheme-I

-9.0

-9.5

En -10.0
t l Scheme- II I
14 -10.5

S -11.0

Sj -11.5

E.

0S -12.0

-. -12.5

-13.0

U,>* -13.5

-14.0
0.000000 0.000005 0.000010 0.000015 0.000020 0.00002

P(common-mode/related failure)

Figure B. 13: Type-I Failure Probability Improvement of Scheme III over Scheme I

affect Scheme I significantly when the common-mode failure probability is low. Those factors
do not present the dominant term for the EDRB Scheme Type-I failure probability.

Type-2 Failure The following assumption has been made: when all three sensor chains indicate
an unnecessary Trip, it is unlikely that the state function or the acceptance test will detect the
error.

2

P(Type -2 failure) =E (pair k failure)
k=-

Let Q, be the probability that two or fewer sensor chains indicate an unnecessary Trip,
that is

Q5 =(I -q,-qf) 3 +({3)q,+qf)(I -q, _qf)2.{3 }q, +qf)2 (I -,-f

We define the following notations for the case in which both nodes in a pair are up:

Q12 = P(node I type-2 failure)
= (q, + qf)' + Q, "qd.

165

Qlb = P(node 1 benign failure)
=Q [(1 - qd) "q% + qd "(1 - q,)]

Q22 P(node 2 type-2 failure)
= (q% + qf)3 + Q . qdt + Qs " [(1 - qd) q + qd (- t)] qdt

For the case in which one node is up and the other is down we have:

Q2 = P(up-node type-2 failure)
= Q22

P(pair k fails) = P(failure I one node down and the other up) +
P(failure I both node up)

=(Q-bQ 22 +Q2)'(1 -Qh)2 2 212(-Qh)'Q•

P(Type-2 failure) = Qb.Q 22 +Q,2)(! -Qh)2.{2 12(1 -Qh).Qh] (B.6)

The comparison of Type-2 failure probabilities fc.: ichteme I and Scheme III is shown in
Figure B. 14. The two curves virtually coincide because `,c I - iiinate terms of Type-2 failure
probabilities for both Scheme I and Scheme III are the first order terms of common-mode and
related failure probabilities (That is, 2d,(l-q,)2 and 2(1-q,-qj)3q d(1-q,) 2 respectively. The results
imply that the improvement of Type-2 failure probability from incorporating EDRB is practically
negligible.

B.6 Techniques of Architecture Selection for Fault Tolerance

We have evaluated three architectures that permit functional diversity to be introduced in a
computer environment designed for easy transition from current analog plant protection systems.
This final section extracts some of the methodological insights that were gained in this process.

1. Figure of Merit

Any selection is based on a figure of merit (FOM). If no FOM is
identified it must still exist in the decision maker's mind. The

166

-4.0

0 Scheme- I

S4 -4.5

,..4

.• -5.0

H

W -5.5

'4-4

"3 -6.0

S-6.5

-7.0

0. 000000 0.000005 0.000010 0.000015 0.000020 0.0o0002
P (related/common mode failure)

Figure B. 14: Type-2 Failure Probability of Scheme I and Scheme III

implied FOM here has been minimum failure probability but taken
by itself it may lead to selections that do not optimally meet the
user's objectives. An example of this occurred in the comparison
between Scheme I and Scheme 11. The latter has significantly
lower failure probability but is less suitable than Scheme I if the
user needs or prefers a plant status evaluation derived from
multiple sensor inputs. Other issues that may be considered in the
FOM are throughput differences between architectures and the
number and types of communication channels that are required for
data exchange.

2. Ordering of Significant Parameters

The alternative architectures will inevitably differ in a number of
parameters that enter into the FOM calculation. It is necessary to
rank the parameters in their order of contribution to the FOM. In
the examples worked here computer (hardware) reliability was in
most cases the top ranked parameter, and thus it was used as the

167

independent variable in most of the comparative plots of system
failure probability. Sensitivity studies can determine what values
the subsidiary parameters can take before invalidating the outcome
of the selection.

3. Understanding the Strengths and Weaknesses of the Selected Alternative

The selection process should not stop with the identification of the
preferred alternative. Much can be gained from examining the
strengths of the preferred alternative that contributed to its
selection, and of course at least as much effort should be expended
on identifying and understanding its weaknesses. Thus, the
selection process did not stop here when Scheme II was shown to
be more reliable than Scheme I. Evaluation of what made Scheme
II superior led to the exploration of other architectures, including
the one described here as Scheme III which is superior to both of
those evaluated earlier.

4. Software Defenses against Software Failures

Carrying the last recommendation a step further, it will be realized
that one of the strengths of Scheme III is that it has software
defenses (the acceptance test) against software failures. Other
architectures that embody this feature might therefore also merit
consideration. The acceptance test is also one of the weaknesses
of Scheme III, in the sense that it must be complete and correct in
order for the architecture to satisfy the requirements.

168

Appendix C

Survey Summary

As part of this effort a small scale survey was conducted of current software development
practices in environments serving safety critical applications. The target organizations included
four vendors of nuclear reactor protection systems (designated as NI through N4) and four
general software development or audit organizations (designated GI through G4). Much of the
information obtained was identified as proprietary. The following tables summarize
non-proprietary information pertinent to the scope of this report. Table C.1 represents
characteristics of recently developed safety grade software; this information was solicited only
from the nuclear vendors. Table C.2 represents technology that is applicable to the general as
well as the nuclear applications and includes information from all eight contacts.

169

Table C.1: Survey Summary --- Class 1E Products

Characteristic N1 N2 N3 N4

Source language PLJM C(?) C(?) PL/M(1)

Future language C C C C

Size of code 85K 1OOK > 64K

Chip type 80286 obsol. 4004 8086(2)

Criteria for test branches statistics functions +
termination statistics

First baseline Requirements Tested Complete Proper

modules system methodology

V & V activities 3 steps 2 steps 2 steps

Personnel Qualification Informal Informal Informal Informal
--- Development

Personnel Qualification Informal Formal Formal Training
--- Test training training

Hardware fault tolerance 4 channel 4 channel redund. 4 channel

Software fault tolerance none none none none

Software fault detection assertion self-check self-check assertion

(1) also Assembly86 and some Pascal.
(2) also Zylog and Motorola chips for auxil. proc.

170

W).

Q r-

-) 4)40)

01) Cl C lCd* l~2
03 z 4 S0

- 0- 0 o.
o C14 +

z+ Co 0
C. -0 0. *0 C

V3 0 .

- - 4)

"~~~~ + (u >4)
+~ 0 0

Ei 0 "

7Z .- 'a M

't~~ o ol 0 + 00
4. 4.) j5

-0 0

AU Z 0 4

F-- ZA
CU C/)

9 ~ 171

Bibliography

[1] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice Hall, 1988.

[2] G. Booch, Object Oriented Design with Applications. Redwood City, CA:
Benjamin/Cummings, 1991.

[3] Ada 9X Mapping/Revision Team, Ada 9X Mapping: Volume I - Mapping Rationale,
Volume II - Mapping Specification. Intermetrics, Inc., Cambridge, MA, Version 3.1 ed.,
Aug. 1991.

[4] C. Anderson, "Ada 9x project report to the public," technical report, Eglin AFB, Florida,
Aug. 1991.

[5] Intel Corporation, PLIM Programmer's Guide, 1987.

[6] H. Curnow et al., "The synthetic whetstone benchmark," Computer Journal, pp. 46-49,
1976.

[7] "Product reviews," IEEE Computer, vol. 23, no. 11, pp. 94-97, 1990.

[8] A. Hook et al., "Cost benefit study on ada, institute for defense analysis," Technical
Report IDA-P-1930, June 1986. available from: NTIS (703)487-4650, AD-A175 748.

[9] D. Dikel et al., "Commercial market potentials for the use of ada language, institute for
defense analyses" Technical Report IDA-M-106, Aug. 1985. available from: NTIS
(703)487-4650, AD-A163 273.

[10] L. K. Mosemann, "Ada and C++: A business case analysis," technical report, US Air
Force, Washington, DC, July 1991.

[11] W. W. Royce, "Managing the development of large software systems: Concepts and
techniques," in Wescon, August 1970.

[12] B. W. Boehm, "A spiral model of software development and enhancement," IEEE
Computer, vol. 21, pp. 61-72, May 1988.

[13] D. R. Wallace and J. C. Cherniavsky, "Guide to software acceptance," NIST Special
Publication 500-180, National Institute of Standards and Technology, Washington, DC,
1990.

172

[14] W. E. Howden, "The theory and practice of functional testing," IEEE Software, vol. 2,
no. 5, pp. 6-17, 1985.

[15] J. C. Huang, "An approac!. to program testing," ACM Computing Surveys, vol. 7, pp.
113-128, Sept. 1975.

[16] M. Barnes et al., "Software testing and evaluation methods: final report the STEM
project," HPR-334, Institutt for Energiteknikk, Halden, Norway, 1988.

[17] P. G. Bishop, Techniques Directory, vol. 3 of Dependability of critical computer systems.
Elsever Applied Science, 1988.

[18] J. W. Duran and S. C. Ntafos, "A report on random testing," in Proc. 5th International
Conference on Software Engineering, pp. 179-183, 1981.

[19] S. Rapps and E. J. Weyuker, "Selecting software test data using data flow information,"
IEEE Trans. Software Engineering, vol. SE-Il, pp. 367-375, Apr. 1985.

[20] D. J. Richardson and L. A. Clarke, "Partition analysis: A method combining testing and
verification," IEEE Trans. Software Engineering, vol. SE-11, no. 12, pp. 1477-1490,
1985.

[21] L. J. White and E. I. Cohen, "A domain strategy for computer program testing," IEEE
Trans. Software Engineering, vol. SE-6, no. 3, pp. 247-257, 1980.

[22] W. E. Howden, "Weak mutation testing and completeness of program test sets," IEEE
Trans. Software Engineering, vol. SE-8, no. 4, pp. 371-379, 1982.

[23] L. A. Clarke and D. J. Richardson, Symbolic evaluation methods --- Implementations and
applications, pp. 65-102. Amsterdam, Holland: North-Holland, 1981.

[24] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement, Prediction,
Application. McGraw-Hill, 1987.

[25] W. H. Farr and 0. D. Smith, "Statistical modeling and estimation of reliability functions
for software (SMERFS) user's guide," NSWC TR 84-373, Naval Surface Weapon Center,
Dahlgren, VI, 1985.

[26] "Application criteria for programmable digital computer systems in safety systems of
nuclear power generating stations," ANSI/IEEE-ANS-7.4.3.2-1982, American Nuclear
Society and Institute of Electrical and Electronics Engineers, Inc., 1982.

173

[27] P. K. Joannou, J. Harauz, et al., "Standard for software engineering of safety critical
software," 982C-H 69002-0001, Ontario Hydro and AECL CANDU, Ontario, Canada,
1991.

[281 A. Aviiienis, "The four-universe information system model for the study of fault-
tolerance," in Digest of 12th International Symposium on Fault-Tolerant Computing, pp.
6-13, June 1982.

[29] "Analysis and evaluation of operational data," 1990 Annual Report, U. S. Nuclear
Regulatory Commission, July 1991.

[301 D. E. Eckhardt and L. D. Lee, "A theoretical basis for the analysis of multiversion
software subject to coincident errors," IEEE Transactions on Software Engineering, vol.
SE-I1, pp. 1511-1517, Dec. 1985.

[311 J. C. Knight and N. G. Leverson, "An experimental evaluation of the assumption of
independence in multiversion programming," IEEE Trans. Software Engineering, vol. SE-
12, pp. 96-109, Jan. 1986.

[32] S. S. Brilliant, J. C. Knight, and N. G. Leverson, "Analysis of faults in an n-version
software experiment," IEEE Trans. Software Engineering, vol. SE-16, pp. 238-247, Feb.
1990.

[331 H. Hecht, "Practicable software fault tolerance for u. s. army tactical systems," Final
Report under Contract DAAB07-90-C-B807, SoHaR Incorporated, Beverly Hills, CA,
June 1991.

[34] A. Avilienis, "A design paradigm for fault-tolerant systems," in Proceedings of AIAA
Computers in Aerospace VI Conference, (Wakefield, MA), Oct. 1987.

[35] J. M. Wing, "A specifier's introduction to formal methods," IEEE Computer, vol. 23,
pp. 8-24, September 1990.

[36] W. P. deRoever, "Foundations of computer science: Leaving the ivory tower," Bulletin
of the European Association for Theoretical Computer Science, June 1991.

[37] C. Landwehr, J. McLean, and C. Heitmeyer, "Defining formalism (letter to the editor),"
Communication of the ACM, October 1991.

[38] J. V. Hill, P. Robinson, and P. A. Stokes, Safety Critical Software in Control Systems, pp.
92-96. Lecture Notes in Computer Science, Inst. of Electrical Engineering, Stevenage,
UK, 1990.

174

[391 D. L. Parnas, G. J. K. Asmis, and J. D. Kendall, "Reviewable development of safety
critical software," in Proc. International Conference Control and Instrumentation in
Nuclear Installations, (Glasgow, UK), May 1990.

[40] D. L. Pamas, G. J. K. Asmis, and J. Madey, "Assessment of safety critical software,"
in Proc. IEEE Denver Section 9th Annual Software Reliability Symposium, (Colorado
Spring, CO), May 1991.

[41] M. Srivas and M. Bickford, "Formal verification of a pipelined microprocessor," IEEE
Software, vol. 7, pp. 52-64, September 1990.

[42] R. L. London, "Proof of algorithms, a new kind of certification," Communication of the
ACM, June 1970.

[43] M. Foley and C. A. R. Hoare, "Proof of a recursive program: Quicksort," Computer
Journal, pp. 391-395, November 1971.

[441 B. Elspass et al., "An assessment of techniques for proving program correctness," ACM
Computing Surveys, June 1972.

[45] B. W. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[46] K. C. Kang, "Requirements engineering project." Briefing charts, April 1990.

[47] P. Zave, "An insider's evaluation of paisley," IEEE Transactions on Software
Engineering, vol. SE-17, pp. 212-225, March 1991.

[48] S. L. Gerhart, "Applications of formal methods: Developing virtuoso software," IEEE

Software, vol. 7, pp. 7-10, September 1990.

[49] J. V. Hall, Software Development Methods in Practice. Elsevier, 1991.

[50] B. Hanrahan et al., "Requirements analysis and design tool report," technical report, Hill
Air Force Base, 1991.

[511 T. J. McCabe, "A complexity measure," IEEE Trans. Software Engineering, vol. SE-2,

pp. 308-320, Dec. 1976.

[521 M. H. Halstead, Elements of Software Science. New York: Elsevier North-Holland, 1977.

[53] K. S. Tso, "Complexity metrics for avionics software," Final Report under WIJAAAF-3
Contract F33615-91-C-1753, SoHaR Incorporated, Beverly Hills, CA, Oct. 1991.

175

[54] R. A. DeMillo and A. J. Offutt, "Constraint-based automatic test data generation," IEEE
Trans. Software Engineering, vol. 17, pp. 900-910, Sept. 1991.

[55] U. Mondal et al., "Application of a microprocessor based trip meter in nuclear reactor
shutdown systems," in EPRI Seminar Presentation, 1992.

[561 M. Hecht, J. Agron, H. Hecht, and K. H. Kim, "A distributed fault tolerant architecture
for nuclear reactor and other critical process control applications," in Digest of 21st
International Symposium on Fault-Tolerant Computing, (Montreal, Canada), pp. 3-9, June
1991.

[57] K. H. Kim and H. 0. Welch, "Distributed execution of recovery blocks: An approach for
uniform treatment of hardware and software faults in real-time applications," IEEE Trans.
Computers, vol. 38, pp. 626-636, May 1989.

[58] S. W. Haeberlin et al., "A handbook for value-impact assessment," NUREG/CR-3568,
U. S. Nuclear Regulatory Commission, Dec. 1983.

*US. GOVERNMENT PRINTING OFFICE i - -3 9-

176

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3 1) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C 3 1 systems. 1h addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reltability/maintainability and testability.

